17 research outputs found

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Relaxin regulates vascular wall remodeling and passive mechanical properties in mice

    No full text
    Administration of recombinant human relaxin (rhRLX) to conscious rats increases global arterial compliance, and small renal arteries (SRA) isolated from these rats demonstrate increased passive compliance. Here we characterize relaxin-induced vascular remodeling and examine its functional relevance. SRA and external iliac arteries (EIA) were examined in rhRLX-treated (1.0 μg/h for 5 days) and relaxin knockout mice. Arterial geometric remodeling and compositional remodeling were quantified using immunohistochemical and biochemical techniques. Vascular mechanical properties were quantified using an ex vivo preparation wherein pressure-diameter data were obtained at various axial lengths. Compared with vehicle-treated mice, SRA from rhRLX-treated mice showed outward geometric remodeling (increased unstressed wall area and wall-to-lumen area ratio), increased smooth muscle cell (SMC) density, reduction in collagen-to-total protein ratio, and unchanged elastin-to-tissue dry weight ratio. Compared with wild-type mice, relaxin knockout mice exhibited the opposite pattern: decreased unstressed wall area and wall-to-lumen area ratio, decreased SMC density, and increased collagen-to-total protein ratio. Although tissue biaxial strain energy of SRA was not different between rhRLX- and vehicle-treated groups at low-to-physiological circumferential and axial strains, it was lower for the rhRLX-treated group at the highest circumferential strain. In contrast to SRA, relaxin administration was not associated with any vascular remodeling or changes in passive mechanics of EIA. Thus relaxin induces both geometric and compositional remodeling in vessel-specific manner. Relaxin-induced geometric remodeling of SRA is responsible for the increase in passive compliance under low-to-physiological levels of circumferential and axial strains, and compositional remodeling becomes functionally relevant only under high circumferential strain.This project was supported by National Heart, Lung, and Blood Institute and McGinnis Chair Endowment Funds Research Grant R01-HL-067937. D. O. Debrah was supported by National Heart, Lung, and Blood Institute Predoctoral Fellowship Award F31-HL-079882
    corecore