56 research outputs found

    Selenoprotein gene nomenclature

    Get PDF
    The human genome contains 25 genes coding for selenocysteine-containing proteins (selenoproteins). These proteins are involved in a variety of functions, most notably redox homeostasis. Selenoprotein enzymes with known functions are designated according to these functions: TXNRD1, TXNRD2, and TXNRD3 (thioredoxin reductases), GPX1, GPX2, GPX3, GPX4 and GPX6 (glutathione peroxidases), DIO1, DIO2, and DIO3 (iodothyronine deiodinases), MSRB1 (methionine-R-sulfoxide reductase 1) and SEPHS2 (selenophosphate synthetase 2). Selenoproteins without known functions have traditionally been denoted by SEL or SEP symbols. However, these symbols are sometimes ambiguous and conflict with the approved nomenclature for several other genes. Therefore, there is a need to implement a rational and coherent nomenclature system for selenoprotein-encoding genes. Our solution is to use the root symbol SELENO followed by a letter. This nomenclature applies to SELENOF (selenoprotein F, the 15 kDa selenoprotein, SEP15), SELENOH (selenoprotein H, SELH, C11orf31), SELENOI (selenoprotein I, SELI, EPT1), SELENOK (selenoprotein K, SELK), SELENOM (selenoprotein M, SELM), SELENON (selenoprotein N, SEPN1, SELN), SELENOO (selenoprotein O, SELO), SELENOP (selenoprotein P, SeP, SEPP1, SELP), SELENOS (selenoprotein S, SELS, SEPS1, VIMP), SELENOT (selenoprotein T, SELT), SELENOV (selenoprotein V, SELV) and SELENOW (selenoprotein W, SELW, SEPW1). This system, approved by the HUGO Gene Nomenclature Committee, also resolves conflicting, missing and ambiguous designations for selenoprotein genes and is applicable to selenoproteins across vertebrates

    Nitric Oxide and Posttranslational Modification of the Vascular Proteome

    No full text

    Selenium, a Micronutrient That Modulates Cardiovascular Health via Redox Enzymology

    No full text
    Selenium (Se) is a trace nutrient that promotes human health through its incorporation into selenoproteins in the form of the redox-active amino acid selenocysteine (Sec). There are 25 selenoproteins in humans, and many of them play essential roles in the protection against oxidative stress. Selenoproteins, such as glutathione peroxidase and thioredoxin reductase, play an important role in the reduction of hydrogen and lipid hydroperoxides, and regulate the redox status of Cys in proteins. Emerging evidence suggests a role for endoplasmic reticulum selenoproteins, such as selenoproteins K, S, and T, in mediating redox homeostasis, protein modifications, and endoplasmic reticulum stress. Selenoprotein P, which functions as a carrier of Se to tissues, also participates in regulating cellular reactive oxygen species. Cellular reactive oxygen species are essential for regulating cell growth and proliferation, protein folding, and normal mitochondrial function, but their excess causes cell damage and mitochondrial dysfunction, and promotes inflammatory responses. Experimental evidence indicates a role for individual selenoproteins in cardiovascular diseases, primarily by modulating the damaging effects of reactive oxygen species. This review examines the roles that selenoproteins play in regulating vascular and cardiac function in health and disease, highlighting their antioxidant and redox actions in these processes

    The Link Between Hyperhomocysteinemia and Hypomethylation

    No full text
    Increased levels of homocysteine have been established as a risk factor for cardiovascular disease (CVD) by mechanisms still incompletely defined. S-Adenosylhomocysteine (SAH) is the metabolic precursor of homocysteine that accumulates in the setting of hyperhomocysteinemia and is a negative regulator of most cell methyltransferases. Several observations, summarized in the current review, support the concept that SAH, rather than homocysteine, may be the culprit in the CVD risk that has been associated with hyperhomocysteinemia. This review examines the biosynthesis and catabolism of homocysteine and how these pathways regulate accumulation of SAH. In addition, the epidemiological and experimental links between hyperhomocysteinemia and CVD are discussed, along with the evidence suggesting a role for SAH in the disease. Finally, the effects of SAH on the hypomethylation of DNA, RNA, and protein are examined, with an emphasis on how specific molecular targets may be mediators of homocysteine-associated vascular disease

    Relative cGMP<sub>T</sub> levels after single, paired, and triple kinetic perturbations of the oxidatively impaired NO˙-cGMP pathway.

    No full text
    <p>The relative level of cGMP<sub>T</sub> as a function of all possible single (13 brown bars), paired (78 gray bars), and triple (286 green bars) perturbations is shown. Values of the rate constants were reduced to 10% of their original values (<a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1004822#pcbi.1004822.s002" target="_blank">S1 Table</a>). Each bar shows the relative integrated cGMP levels over the period of simulation, or . Note that some of the optimal perturbations are highlighted in this figure.</p
    • 

    corecore