35 research outputs found

    Warm Rain in Southern West Africa: A Case Study at Savè

    Get PDF
    International audienceA warm-rain episode over southern West Africa is analyzed using unprecedented X-band radar observations from Savè, Benin and a Large-Eddy Simulation (LES) over a 240 × 240 km 2 domain. While warm rain contributes to 1% of the total rainfall in the LES, its spatial extent accounts for 24% of the area covered by rainfall. Almost all the warm-rain cells tracked in the observation and the LES have a size between 2 and 10 km and a lifetime varying from 5 to 60 min. During the nighttime, warm-rain cells are caused by the dissipation of large deep-convection systems while during the daytime they are formed by the boundary-layer thermals. The vertical extension of the warm-rain cells is limited by vertical wind shear at their top. In the simulation, their top is 1.6 km higher with respect to the radar observations due to the large-scale environment given by wrong initial conditions. This study shows the challenge of simulating warm rain in southern West Africa, a key phenomenon during the little dry season

    Precipitation and microphysical processes observed by three polarimetric X-band radars and ground-based instrumentation during HOPE

    Get PDF
    This study presents a first analysis of precipitation and related microphysical processes observed by three polarimetric X-band Doppler radars (BoXPol, JuXPol and KiXPol) in conjunction with a ground-based network of disdrometers, rain gauges and vertically pointing micro rain radars (MRRs) during the High Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)²) Observational Prototype Experiment (HOPE) during April and May 2013 in Germany. While JuXPol and KiXPol were continuously observing the central HOPE area near Forschungszentrum Jülich at a close distance, BoXPol observed the area from a distance of about 48.5 km. MRRs were deployed in the central HOPE area and one MRR close to BoXPol in Bonn, Germany. Seven disdrometers and three rain gauges providing point precipitation observations were deployed at five locations within a 5 km  ×  5 km region, while three other disdrometers were collocated with the MRR in Bonn. The daily rainfall accumulation at each rain gauge/disdrometer location estimated from the three X-band polarimetric radar observations showed very good agreement. Accompanying microphysical processes during the evolution of precipitation systems were well captured by the polarimetric X-band radars and corroborated by independent observations from the other ground-based instrument

    First implementation of a new cross-disciplinary observation strategy for heavy precipitation events from formation to flooding

    Get PDF
    Heavy Precipitation Events (HPE) are the result of enormous quantities of water vapor being transported to a limited area. HPE rainfall rates and volumes cannot be fully stored on and below the land surface, often leading to floods with short forecast lead times that may cause damage to humans, properties, and infrastructure. Toward an improved scientific understanding of the entire process chain from HPE formation to flooding at the catchment scale, we propose an elaborated event-triggered observation concept. It combines flexible mobile observing systems out of the fields of meteorology, hydrology and geophysics with stationary networks to capture atmospheric transport processes, heterogeneous precipitation patterns, land surface and subsurface storage processes, and runoff dynamics. As part of the Helmholtz Research Infrastructure MOSES (Modular Observation Solutions for Earth Systems), the effectiveness of our observation strategy is illustrated by its initial implementation in the Mueglitz river basin (210 km2^2), a headwater catchment of the Elbe in the Eastern Ore Mountains with historical and recent extreme flood events. Punctual radiosonde observations combined with continuous microwave radiometer measurements and back trajectory calculations deliver information about the moisture sources, and initiation and development of HPE. X-band radar observations calibrated by ground-based disdrometers and rain gauges deliver precipitation information with high spatial resolution. Runoff measurements in small sub-catchments complement the discharge time series of the operational network of gauging stations. Closing the catchment water balance at the HPE scale, however, is still challenging. While evapotranspiration is of less importance when studying short-term convective HPE, information on the spatial distribution and on temporal variations of soil moisture and total water storage by stationary and roving cosmic ray measurements and by hybrid terrestrial gravimetry offer prospects for improved quantification of the storage term of the water balance equation. Overall, the cross-disciplinary observation strategy presented here opens up new ways toward an integrative and scale-bridging understanding of event dynamics

    Advancing human nutrition without degrading land resources through modeling cropping systems in the Ethiopian highlands

    Get PDF
    Food shortage in sub-Saharan Africa is generally considered a function of limited access to food, with little thought to nutritional quality. Analyzing household production of nutrients across farming systems could be valuable in guiding the improvement of those systems. An optimization model was employed to analyze the scenario of human nutrition and cropland allocation in enset (Enset ventricosum)/root crop-based and cereal-based systems of the Ethiopian Highlands. The type and amount of nutrients produced in each system were analyzed, and an optimization model was used to analyze which cropping strategies might improve the nutritional quality of the household using existing resources. Both production systems were in food deficit, in terms of quantity and quality of nutrients, except for iron. The energy supply of resource-poor households in the enset/root crop-based system was only 75% of the recommended daily dietary allowance (RDA) of the World Health Organization (WHO), whereas resource-rich farmers were able to meet their energy, protein, zinc, and thiamine demands. Extremely high deficiency was found in zinc, calcium, vitamin A, and vitamin C, which provided only 26.5%, 34%, 1.78%, and 12%, of the RDA, respectively. The RDA could be satisfied if the land area occupied by enset, kale, and beans were expanded by about 20%, 10%, and 40%, respectively, at the expense of maize and sweet potato. The cereal-based system also had critical nutrient deficits in calcium, vitamin A, and vitamin C, which provided 30%, 2.5%, and 2% of the RDA, respectively. In the cereal system, the RDA could be fully satisfied by reducing cropland allocated to barley by about 50% and expanding the land area occupied by faba beans, kale, and enset. A shift from the cereal/root crop-dominated system to a perennial-enset dominated system would decrease soil erosion by improving the crop factor by about 45%. This shift would also have a very strong positive impact on soil fertility management. However, any policy suggestions for change in cropland allocation should be done through negotiations with households, communities, and district stakeholders

    Swabian MOSES 2021: An interdisciplinary field campaign for investigating convective storms and their event chains

    Get PDF
    The Neckar Valley and the Swabian Jura in southwest Germany comprise a hotspot for severe convective storms, causing tens of millions of euros in damage each year. Possible reasons for the high frequency of thunderstorms and the associated event chain across compartments were investigated in detail during the hydro-meteorological field campaign Swabian MOSES carried out between May and September 2021. Researchers from various disciplines established more than 25 temporary ground-based stations equipped with state-of-the-art in situ and remote sensing observation systems, such as lidars, dual-polarization X- and C-band Doppler weather radars, radiosondes including stratospheric balloons, an aerosol cloud chamber, masts to measure vertical fluxes, autosamplers for water probes in rivers, and networks of disdrometers, soil moisture, and hail sensors. These fixed-site observations were supplemented by mobile observation systems, such as a research aircraft with scanning Doppler lidar, a cosmic ray neutron sensing rover, and a storm chasing team launching swarmsondes in the vicinity of hailstorms. Seven Intensive Observation Periods (IOPs) were conducted on a total of 21 operating days. An exceptionally high number of convective events, including both unorganized and organized thunderstorms such as multicells or supercells, occurred during the study period. This paper gives an overview of the Swabian MOSES (Modular Observation Solutions for Earth Systems) field campaign, briefly describes the observation strategy, and presents observational highlights for two IOPs

    The past, present, and future of the Brain Imaging Data Structure (BIDS)

    Get PDF
    The Brain Imaging Data Structure (BIDS) is a community-driven standard for the organization of data and metadata from a growing range of neuroscience modalities. This paper is meant as a history of how the standard has developed and grown over time. We outline the principles behind the project, the mechanisms by which it has been extended, and some of the challenges being addressed as it evolves. We also discuss the lessons learned through the project, with the aim of enabling researchers in other domains to learn from the success of BIDS

    2002: Cell tracking with TRACE3D - a new algorithm

    No full text
    Abstract An automated algorithm called TRACE3D is presented which identifies convective cells and tracks them in time and space by exclusively using radar reflectivity data as input. Identification of cells is performed by assembling contiguous regions that excel certain reflectivity thresholds. Tracking is done in that the position of a cell in a new radar image is predicted by an extrapolation procedure based on its former position; special care is taken in case of possible splitting and merging events. In comparing the results of the tracking algorithm with those from four test persons, TRACE3D shows a promising performance, and hence, it seems possible to apply this algorithm as a nowcasting tool.

    The TRIple-frequency and Polarimetric radar Experiment for improving process observations of winter precipitation

    Get PDF
    This paper describes a 2-month dataset of ground-based triple-frequency (X, Ka, and W band) Doppler radar observations during the winter season obtained at the Jülich ObservatorY for Cloud Evolution Core Facility (JOYCE-CF), Germany. All relevant post-processing steps, such as re-gridding and offset and attenuation correction, as well as quality flagging, are described. The dataset contains all necessary information required to recover data at intermediate processing steps for user-specific applications and corrections (https://doi.org/10.5281/zenodo.1341389; Dias Neto et al., 2019). The large number of ice clouds included in the dataset allows for a first statistical analysis of their multifrequency radar signatures. The reflectivity differences quantified by dual-wavelength ratios (DWRs) reveal temperature regimes where aggregation seems to be triggered. Overall, the aggregation signatures found in the triple-frequency space agree with and corroborate conclusions from previous studies. The combination of DWRs with mean Doppler velocity and linear depolarization ratio enables us to distinguish signatures of rimed particles and melting snowflakes. The riming signatures in the DWRs agree well with results found in previous triple-frequency studies. Close to the melting layer, however, we find very large DWRs (up to 20 dB), which have not been reported before. A combined analysis of these extreme DWR with mean Doppler velocity and a linear depolarization ratio allows this signature to be separated, which is most likely related to strong aggregation, from the triple-frequency characteristics of melting particles
    corecore