149 research outputs found
Structural and Functional Deficits in a Neuronal Calcium Sensor-1 Mutant Identified in a Case of Autistic Spectrum Disorder
Neuronal calcium sensor-1 (NCS-1) is a Ca2+ sensor protein that has been implicated in the regulation of various aspects of neuronal development and neurotransmission. It exerts its effects through interactions with a range of target proteins one of which is interleukin receptor accessory protein like-1 (IL1RAPL1) protein. Mutations in IL1RAPL1 have recently been associated with autism spectrum disorders and a missense mutation (R102Q) on NCS-1 has been found in one individual with autism. We have examined the effect of this mutation on the structure and function of NCS-1. From use of NMR spectroscopy, it appeared that the R102Q affected the structure of the protein particularly with an increase in the extent of conformational exchange in the C-terminus of the protein. Despite this change NCS-1(R102Q) did not show changes in its affinity for Ca2+ or binding to IL1RAPL1 and its intracellular localisation was unaffected. Assessment of NCS-1 dynamics indicated that it could rapidly cycle between cytosolic and membrane pools and that the cycling onto the plasma membrane was specifically changed in NCS-1(R102Q) with the loss of a Ca2+ -dependent component. From these data we speculate that impairment of the normal cycling of NCS-1 by the R102Q mutation could have subtle effects on neuronal signalling and physiology in the developing and adult brain
Analysis of Transposon Interruptions Suggests Selection for L1 Elements on the X Chromosome
It has been hypothesised that the massive accumulation of L1 transposable elements on the X chromosome is due to their function in X inactivation, and that the accumulation of Alu elements near genes is adaptive. We tested the possible selective advantage of these two transposable element (TE) families with a novel method, interruption analysis. In mammalian genomes, a large number of TEs interrupt other TEs due to the high overall abundance and age of repeats, and these interruptions can be used to test whether TEs are selectively neutral. Interruptions of TEs, which are beneficial for the host, are expected to be deleterious and underrepresented compared with neutral ones. We found that L1 elements in the regions of the X chromosome that contain the majority of the inactivated genes are significantly less frequently interrupted than on the autosomes, while L1s near genes that escape inactivation are interrupted with higher frequency, supporting the hypothesis that L1s on the X chromosome play a role in its inactivation. In addition, we show that TEs are less frequently interrupted in introns than in intergenic regions, probably due to selection against the expansion of introns, but the insertion pattern of Alus is comparable to other repeats
ITPase deficiency causes a Martsolf-like syndrome with a lethal infantile dilated cardiomyopathy
Typical Martsolf syndrome is characterized by congenital cataracts, postnatal microcephaly, developmental delay, hypotonia, short stature and biallelic hypomorphic mutations in either RAB3GAP1 or RAB3GAP2. Genetic analysis of 85 unrelated “mutation negative” probands with Martsolf or Martsolf-like syndromes identified two individuals with different homozygous null mutations in ITPA, the gene encoding inosine triphosphate pyrophosphatase (ITPase). Both probands were from multiplex families with a consistent, lethal and highly distinctive disorder; a Martsolf-like syndrome with infantile-onset dilated cardiomyopathy. Severe ITPase-deficiency has been previously reported with infantile epileptic encephalopathy (MIM 616647). ITPase acts to prevent incorporation of inosine bases (rI/dI) into RNA and DNA. In Itpa-null cells dI was undetectable in genomic DNA. dI could be identified at a low level in mtDNA without detectable mitochondrial genome instability, mtDNA depletion or biochemical dysfunction of the mitochondria. rI accumulation was detectable in proband-derived lymphoblastoid RNA. In Itpa-null mouse embryos rI was detectable in the brain and kidney with the highest level seen in the embryonic heart (rI at 1 in 385 bases). Transcriptome and proteome analysis in mutant cells revealed no major differences with controls. The rate of transcription and the total amount of cellular RNA also appeared normal. rI accumulation in RNA–and by implication rI production—correlates with the severity of organ dysfunction in ITPase deficiency but the basis of the cellulopathy remains cryptic. While we cannot exclude cumulative minor effects, there are no major anomalies in the production, processing, stability and/or translation of mRNA
Convergent evolution of chicken Z and human X chromosomes by expansion and gene acquisition
In birds, as in mammals, one pair of chromosomes differs between the sexes. In birds, males are ZZ and females ZW. In mammals, males are XY and females XX. Like the mammalian XY pair, the avian ZW pair is believed to have evolved from autosomes, with most change occurring in the chromosomes found in only one sex—the W and Y chromosomes1, 2, 3, 4, 5. By contrast, the sex chromosomes found in both sexes—the Z and X chromosomes—are assumed to have diverged little from their autosomal progenitors2. Here we report findings that challenge this assumption for both the chicken Z chromosome and the human X chromosome. The chicken Z chromosome, which we sequenced essentially to completion, is less gene-dense than chicken autosomes but contains a massive tandem array containing hundreds of duplicated genes expressed in testes. A comprehensive comparison of the chicken Z chromosome with the finished sequence of the human X chromosome demonstrates that each evolved independently from different portions of the ancestral genome. Despite this independence, the chicken Z and human X chromosomes share features that distinguish them from autosomes: the acquisition and amplification of testis-expressed genes, and a low gene density resulting from an expansion of intergenic regions. These features were not present on the autosomes from which the Z and X chromosomes originated but were instead acquired during the evolution of Z and X as sex chromosomes. We conclude that the avian Z and mammalian X chromosomes followed convergent evolutionary trajectories, despite their evolving with opposite (female versus male) systems of heterogamety. More broadly, in birds and mammals, sex chromosome evolution involved not only gene loss in sex-specific chromosomes, but also marked expansion and gene acquisition in sex chromosomes common to males and females.National Science Foundation (U.S.)Howard Hughes Medical Institut
Nutritive value of unconventional fibrous ingredients fed to Guinea pigs in the Democratic Republic of Congo
peer reviewedThe energy and protein value for Guinea pigs (GP) of 9 forages (7 dicots and 2 grasses) and 5 hay-based diets was determined. The apparent faecal digestibility of dry matter, organic matter, crude protein and energy was measured on GP housed in metabolic cages. The forages and the diets were digested in vitro using pepsin and pancreatin hydrolysis and gas fermentation test to simulate stomach, small intestine and large intestine, respectively. Most of the dicots had high digestible crude protein content (152–201 g/kg DM) and the 2 grasses showed lower values (80–85 g/kg DM). Digestible energy content of the forages ranged between 5.79 to 13.08 MJ/kg DM. None of the forage species or hay-based diets provided sufficient energy to supply the 11.7 MJ/kg metabolic energy requirements. The influence of intestinal fermentation on energy and protein values was highlighted by correlations (P<0.05) between in vivo and in vitro data, including gas fermentation. It is the first time that such relationships are reported in single-stomach animals
Buprenorphine-Naloxone in the Treatment of Codeine Dependence: a Scoping Review of Clinical Case Presentations
Misuse of prescribed and over the counter (OTC) codeine containing medicines is an increasing public health concern in recent times. Studies have called for low threshold treatment services for individuals experiencing codeine dependence using buprenorphine naloxone therapy. We present a scoping review of clinical case presentation literature on the use of buprenorphine-naloxone in the treatment of codeine dependence. Seven records (four single case studies and three case series) on codeine dependence treated with buprenorphine-naloxone were included. Five themes emerged following a review of the cases for the treatment of codeine dependence with buprenorphine-naloxone. They are: (1) Patient Profiles; (2) History of Codeine Misuse; (3) Medical Problems; (4) Use of Other Substances; and (5) Buprenorphine-naloxone in the treatment of Codeine Dependence. The review highlights the complexities of patients with regards to pain, psychiatric illness, poly substance use and iatrogenic dependence, with findings encouraging in terms of patient stabilisation and recovery
Recommended from our members
Thermal WIMPs and the scale of new physics: global fits of Dirac dark matter effective field theories
We assess the status of a wide class of WIMP dark matter (DM) models in light
of the latest experimental results using the global fitting framework
. We perform a global analysis of effective field theory (EFT)
operators describing the interactions between a gauge-singlet Dirac fermion and
the Standard Model quarks, the gluons and the photon. In this bottom-up
approach, we simultaneously vary the coefficients of 14 such operators up to
dimension 7, along with the DM mass, the scale of new physics and several
nuisance parameters. Our likelihood functions include the latest data from
, direct and indirect detection experiments, and the LHC. For
DM masses below 100 GeV, we find that it is impossible to satisfy all
constraints simultaneously while maintaining EFT validity at LHC energies. For
new physics scales around 1 TeV, our results are influenced by several small
excesses in the LHC data and depend on the prescription that we adopt to ensure
EFT validity. Furthermore, we find large regions of viable parameter space
where the EFT is valid and the relic density can be reproduced, implying that
WIMPs can still account for the DM of the universe while being consistent with
the latest data
Avian W and mammalian Y chromosomes convergently retained dosage-sensitive regulators
After birds diverged from mammals, different ancestral autosomes evolved into sex chromosomes in each lineage. In birds, females are ZW and males are ZZ, but in mammals females are XX and males are XY. We sequenced the chicken W chromosome, compared its gene content with our reconstruction of the ancestral autosomes, and followed the evolutionary trajectory of ancestral W-linked genes across birds. Avian W chromosomes evolved in parallel with mammalian Y chromosomes, preserving ancestral genes through selection to maintain the dosage of broadly expressed regulators of key cellular processes. We propose that, like the human Y chromosome, the chicken W chromosome is essential for embryonic viability of the heterogametic sex. Unlike other sequenced sex chromosomes, the chicken W chromosome did not acquire and amplify genes specifically expressed in reproductive tissues. We speculate that the pressures that drive the acquisition of reproduction-related genes on sex chromosomes may be specific to the male germ line
Sex-Specific Genetic Structure and Social Organization in Central Asia: Insights from a Multi-Locus Study
In the last two decades, mitochondrial DNA (mtDNA) and the non-recombining portion of the Y chromosome (NRY) have been extensively used in order to measure the maternally and paternally inherited genetic structure of human populations, and to infer sex-specific demography and history. Most studies converge towards the notion that among populations, women are genetically less structured than men. This has been mainly explained by a higher migration rate of women, due to patrilocality, a tendency for men to stay in their birthplace while women move to their husband's house. Yet, since population differentiation depends upon the product of the effective number of individuals within each deme and the migration rate among demes, differences in male and female effective numbers and sex-biased dispersal have confounding effects on the comparison of genetic structure as measured by uniparentally inherited markers. In this study, we develop a new multi-locus approach to analyze jointly autosomal and X-linked markers in order to aid the understanding of sex-specific contributions to population differentiation. We show that in patrilineal herder groups of Central Asia, in contrast to bilineal agriculturalists, the effective number of women is higher than that of men. We interpret this result, which could not be obtained by the analysis of mtDNA and NRY alone, as the consequence of the social organization of patrilineal populations, in which genetically related men (but not women) tend to cluster together. This study suggests that differences in sex-specific migration rates may not be the only cause of contrasting male and female differentiation in humans, and that differences in effective numbers do matter
- …