2,540 research outputs found
Potassium corrosion test loop development - Purification, analysis and handling of sodium and potassium Topical report no. 4
Corrosion test loop, and purification, analysis, and handling of sodium and potassiu
Unicor: A Species Connectivity And Corridor Network Simulator
Maintenance of species and landscape connectivity has emerged as an urgent need in the field of conservation biology. Current gaps include quantitative and spatially-explicit predictions of current and potential future patterns of fragmentation under a range of climate change scenarios. To address this need, we introduce UNIversal CORridor network simulator (UNICOR), a species connectivity and corridor identification tool. UNICOR applies Dijkstraâs shortest path algorithm to individual-based simulations and outputs can be used to designate movement corridors, identify isolated populations, and characterize zones for species persistence. The program's key features include a driver-module framework, connectivity maps with thresholding and buffering, and graph theory metrics. Through parallel-processing computational efficiency is greatly improved, allowing for larger ranges (grid dimensions of thousands) and larger populations (individuals in the thousands), whereas previous approaches are limited by prolonged computational times and poor algorithmic efficiency; restricting problem-size (range and populations), and requiring artificially subsampling of target populations
On the combination of omics data for prediction of binary outcomes
Enrichment of predictive models with new biomolecular markers is an important
task in high-dimensional omic applications. Increasingly, clinical studies
include several sets of such omics markers available for each patient,
measuring different levels of biological variation. As a result, one of the
main challenges in predictive research is the integration of different sources
of omic biomarkers for the prediction of health traits. We review several
approaches for the combination of omic markers in the context of binary outcome
prediction, all based on double cross-validation and regularized regression
models. We evaluate their performance in terms of calibration and
discrimination and we compare their performance with respect to single-omic
source predictions. We illustrate the methods through the analysis of two real
datasets. On the one hand, we consider the combination of two fractions of
proteomic mass spectrometry for the calibration of a diagnostic rule for the
detection of early-stage breast cancer. On the other hand, we consider
transcriptomics and metabolomics as predictors of obesity using data from the
Dietary, Lifestyle, and Genetic determinants of Obesity and Metabolic syndrome
(DILGOM) study, a population-based cohort, from Finland
Symmetric and asymmetric action integration during cooperative object manipulation in virtual environments
Cooperation between multiple users in a virtual environment (VE) can take place at one of three levels. These
are defined as where users can perceive each other (Level 1), individually change the scene (Level 2), or
simultaneously act on and manipulate the same object (Level 3). Despite representing the highest level of
cooperation, multi-user object manipulation has rarely been studied. This paper describes a behavioral
experiment in which the piano movers' problem (maneuvering a large object through a restricted space) was
used to investigate object manipulation by pairs of participants in a VE. Participants' interactions with the object
were integrated together either symmetrically or asymmetrically. The former only allowed the common
component of participants' actions to take place, but the latter used the mean. Symmetric action integration was
superior for sections of the task when both participants had to perform similar actions, but if participants had to
move in different ways (e.g., one maneuvering themselves through a narrow opening while the other traveled
down a wide corridor) then asymmetric integration was superior. With both forms of integration, the extent to
which participants coordinated their actions was poor and this led to a substantial cooperation overhead (the
reduction in performance caused by having to cooperate with another person)
On the regularization scheme and gauge choice ambiguities in topologically massive gauge theories
It is demonstrated that in the (2+1)-dimensional topologically massive gauge
theories an agreement of the Pauli-Villars regularization scheme with the other
schemes can be achieved by employing pairs of auxiliary fermions with the
opposite sign masses. This approach does not introduce additional violation of
discrete (P and T) symmetries. Although it breaks the local gauge symmetry only
in the regulator fields' sector, its trace disappears completely after removing
the regularization as a result of superrenormalizability of the model. It is
shown also that analogous extension of the Pauli-Villars regularization in the
vector particle sector can be used to agree the arbitrary covariant gauge
results with the Landau ones. The source of ambiguities in the covariant gauges
is studied in detail. It is demonstrated that in gauges that are softer in the
infrared region (e.g. Coulomb or axial) nonphysical ambiguities inherent to the
covariant gauges do not arise.Comment: Latex, 13 pages. Replaced mainly to change preprint references to
journal one
Two-stage potassium test turbine. Volume 4 - Materials support of performance and endurance tests
Two stage potassium vapor turbine - materials support of performance and endurance test
Thermodynamic parameters of bonds in glassy materials from viscosity-temperature relationships
Doremus's model of viscosity assumes that viscous flow in amorphous materials is mediated by broken bonds (configurons). The resulting equation contains four coefficients, which are directly related to the entropies and enthalpies of formation and motion of the configurons. Thus by fitting this viscosity equation to experimental viscosity data these enthalpy and entropy terms can be obtained. The non-linear nature of the equation obtained means that the fitting process is non-trivial. A genetic algorithm based approach has been developed to fit the equation to experimental viscosity data for a number of glassy materials, including SiO2, GeO2, B2O3, anorthite, diopside, xNa2Oâ(1-x)SiO2, xPbOâ(1-x)SiO2, soda-lime-silica glasses, salol, and α-phenyl-o-cresol. Excellent fits of the equation to the viscosity data were obtained over the entire temperature range. The fitting parameters were used to quantitatively determine the enthalpies and entropies of formation and motion of configurons in the analysed systems and the activation energies for flow at high and low temperatures as well as fragility ratios using the Doremus criterion for fragility. A direct anti-correlation between fragility ratio and configuron percolation threshold, which determines the glass transition temperature in the analysed materials, was found
Assessing the Challenges of SurfaceâLevel Aerosol Mass Estimates From Remote Sensing During the SEAC4RS and SEARCH Campaigns: Baseline Surface Observations and Remote Sensing in the Southeastern United States
The Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign conducted in the southeast United States (SEUS) during the summer of 2013 provided a singular opportunity to study local aerosol chemistry and investigate aerosol radiative properties and PM2.5 relationships, focusing on the complexities involved in simplifying the relationship into a linear regression. We utilize three Southeastern Aerosol Research and Characterization network sites and one Environmental Protection Agency Chemical Speciation Network station that afforded simultaneous Aerosol Robotic Network (AERONET) aerosol optical depth (AOD) and aerosol mass, chemistry, and light scattering monitoring. Prediction of AERONET AOD using linear regression of dailyâmean PM2.5 during the SEAC4RS campaign yielded r2 of 0.36â0.53 and highly variable slopes across four sites. There were further reductions in PM2.5 predictive skill using Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiâangle Imaging SpetroRadiometer (MISR) AOD data, which have shorter correlation lengths and times relative to surface PM2.5. Longâterm trends in aerosol chemistry and optical properties in the SEUS are also investigated and compared to SEAC4RS period data, establishing that the SEUS experienced significant reduction in aerosol mass, corresponding with changes in both aerosol chemistry and optical properties. These changes have substantial impact on the PM2.5âAOD linear regression relationship and reinforce the need for longâterm aerosol observation stations in addition to concentrated field campaigns
Wireless zombies! A re-creation of Golden Age radio drama for a contemporary audience
The literally unseen yet fully imagined abject condition of the zombie has ensured that this incarnation of horror has played a resonant role in the history of popular radio drama through to the digital audio cultures of the present day. This article describes and contextualizes the production of Loverâs Lane (2013), an all-new zombie radio play in the 1940s style, by audio and radio researchers at the University of South Wales. This practical re-creation of the performance practices of âGolden Ageâ radio was designed for both theatre and online audiences simultaneously. The discussion includes a variety of perspectives: writing/directing (Hand); production and broadcast (Traynor); music composition and performance (Challis and Smith); sound effects (Dean); and voice acting (DâArcy)
- âŠ