8 research outputs found

    The structure of human EXD2 reveals a chimeric 3' to 5' exonuclease domain that discriminates substrates via metal coordination.

    Get PDF
    EXD2 (3'-5' exonuclease domain-containing protein 2) is an essential protein with a conserved DEDDy superfamily 3'-5' exonuclease domain. Recent research suggests that EXD2 has two potential functions: as a component of the DNA double-strand break repair machinery and as a ribonuclease for the regulation of mitochondrial translation. Herein, electron microscope imaging analysis and proximity labeling revealed that EXD2 is anchored to the mitochondrial outer membrane through a conserved N-terminal transmembrane domain, while the C-terminal region is cytosolic. Crystal structures of the exonuclease domain in complex with Mn2+/Mg2+ revealed a domain-swapped dimer in which the central α5-α7 helices are mutually crossed over, resulting in chimeric active sites. Additionally, the C-terminal segments absent in other DnaQ family exonucleases enclose the central chimeric active sites. Combined structural and biochemical analyses demonstrated that the unusual dimeric organization stabilizes the active site, facilitates discrimination between DNA and RNA substrates based on divalent cation coordination and generates a positively charged groove that binds substrates.Cell Logistics Research Center [2016R1A5A1007318]; Basic Research Program, National Research Foundation of Korea [NRF-2019R1A2C3008463]; Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea [HI18C1395]; Institute for Basic Science [IBS-R022-D1]. Funding for open access charge: Cell Logistics Research Center, National Research Foundation of Korea [2016R1A5A1007318]

    Uncovering the Topic Landscape of Product-Service System Research: from Sustainability to Value Creation

    No full text
    As the product-service system (PSS) is considered a promising business model that can create more value for customers, PSS research has enjoyed remarkable growth in its volume and coverage over the last decade. This study aims to delineate the thematic landscape of PSS research by identifying latent topics from a large amount of scholarly data. Ten topics of PSS research are identified by applying the Latent Dirichlet Allocation (LDA) model to 1229 PSS publications published between 2000 and 2016. The ten PSS topics are briefly reviewed to provide an overview of what has previously been studied in PSS research. We also investigate which topics rise or fall in popularity by identifying hot and cold topics of PSS research. It is observed that the focus of discussions on the benefits of PSS has shifted from sustainability to value creation. Also, increasing attention has been paid to more practical topics such as PSS implementation. The areas of subspecialty of the top ten PSS journals are also examined to explore the interdisciplinary nature of PSS research and thematic differences across disciplines. The findings of this study can provide rich implications for both academia and practice in the field of PSS

    Improving Biosensors by the Use of Different Nanomaterials: Case Study with Microcystins as Target Analytes

    No full text
    The eutrophication of lakes and rivers without adequate rainfall leads to excessive growth of cyanobacterial harmful algal blooms (CyanoHABs) that produce toxicants, green tides, and unpleasant odors. The rapid growth of CyanoHABs owing to global warming, climate change, and the development of rainforests and dams without considering the environmental concern towards lakes and rivers is a serious issue. Humans and livestock consuming the toxicant-contaminated water that originated from CyanoHABs suffer severe health problems. Among the various toxicants produced by CyanoHABs, microcystins (MCs) are the most harmful. Excess accumulation of MC within living organisms can result in liver failure and hepatocirrhosis, eventually leading to death. Therefore, it is essential to precisely detect MCs in water samples. To date, the liquid chromatography–mass spectrometry (LC–MS) and enzyme-linked immunosorbent assay (ELISA) have been the standard methods for the detection of MC and provide precise results with high reliability. However, these methods require heavy instruments and complicated operation steps that could hamper the portability and field-readiness of the detection system. Therefore, in order for this goal to be achieved, the biosensor has been attracted to a powerful alternative for MC detection. Thus far, several types of MC biosensor have been proposed to detect MC in freshwater sample. The introduction of material is a useful option in order to improve the biosensor performance and construct new types of biosensors. Introducing nanomaterials to the biosensor interface provides new phenomena or enhances the sensitivity. In recent times, different types of nanomaterials, such as metallic, carbon-based, and transition metal dichalcogenide-based nanomaterials, have been developed and used to fabricate biosensors for MC detection. This study reviews the recent advancements in different nanomaterial-based MC biosensors

    Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine

    No full text
    corecore