36 research outputs found

    Identification of endogenous small peptides involved in rice immunity through transcriptomics- and proteomics-based screening

    Get PDF
    Small signalling peptides, generated from larger protein precursors, are important components to orchestrate various plant processes such as development and immune responses. However, small signalling peptides involved in plant immunity remain largely unknown. Here, we developed a pipeline using transcriptomics- and proteomics-based screening to identify putative precursors of small signalling peptides: small secreted proteins (SSPs) in rice, induced by rice blast fungus Magnaporthe oryzae and its elicitor, chitin. We identified 236 SSPs including members of two known small signalling peptide families, namely rapid alkalinization factors and phytosulfokines, as well as many other protein families that are known to be involved in immunity, such as proteinase inhibitors and pathogenesis-related protein families. We also isolated 52 unannotated SSPs and among them, we found one gene which we named immune response peptide (IRP) that appeared to encode the precursor of a small signalling peptide regulating rice immunity. In rice suspension cells, the expression of IRP was induced by bacterial peptidoglycan and fungal chitin. Overexpression of IRP enhanced the expression of a defence gene, PAL1 and induced the activation of the MAPKs in rice suspension cells. Moreover, the IRP protein level increased in suspension cell medium after chitin treatment. Collectively, we established a simple and efficient pipeline to discover SSP candidates that probably play important roles in rice immunity and identified 52 unannotated SSPs that may be useful for further elucidation of rice immunity. Our method can be applied to identify SSPs that are involved not only in immunity but also in other plant functions

    Central control of bone remodeling by neuromidin U.

    Get PDF
    Bone remodeling, the function affected in osteoporosis, the most common of bone diseases, comprises two phases: bone formation by matrix-producing osteoblasts 1 and bone resorption by osteoclasts 2 . The demonstration that the anorexigenic hormone leptin 3-5 inhibits bone formation through a hypothalamic relay Bone mass is maintained at a constant level between puberty and menopause by a succession of bone-resorption and bone-formation phases NMU is a small peptide produced by nerve cells in the submucosal and myenteric plexuses in the small intestine, and also by structures in the brain, including the dorsomedial nucleus of the hypothalamus 9 . It is generally assumed that NMU acts as a neuropeptide to regulate various aspects of physiology, including appetite, stress response and SNS activation 9 . Indeed, NMU-deficient (Nmu -/-) mice develop obesity due to increased food intake and reduced locomotor activity that is believed, at least in part, to be leptin independent 8 . In addition, expression of NMU is diminished in leptin-deficient (Lep ob ) mice 18 , but can be induced in these mice by leptin treatment When assessed at 3 and 6 months of age, both male and female Nmu -/-mice showed a high bone mass phenotype as compared to the wild type (WT), with male mice more severely affected than female mic

    Integrative Annotation of 21,037 Human Genes Validated by Full-Length cDNA Clones

    Get PDF
    The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/). It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs), identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly) may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci) did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA genes. In addition, among 72,027 uniquely mapped SNPs and insertions/deletions localized within human genes, 13,215 nonsynonymous SNPs, 315 nonsense SNPs, and 452 indels occurred in coding regions. Together with 25 polymorphic microsatellite repeats present in coding regions, they may alter protein structure, causing phenotypic effects or resulting in disease. The H-InvDB platform represents a substantial contribution to resources needed for the exploration of human biology and pathology

    Multiple Protein-Protein Interactions by RNA Polymerase I-Associated Factor PAF49 and Role of PAF49 in rRNA Transcription

    No full text
    We previously demonstrated the critical role of RNA polymerase I (Pol I)-associated factor PAF53 in mammalian rRNA transcription. Here, we report the isolation and characterization of another Pol I-associated factor, PAF49. Mouse PAF49 shows striking homology to the human nucleolar protein ASE-1, so that they are considered orthologues. PAF49 and PAF53 were copurified with a subpopulation of Pol I during purification from cell extracts. Physical association of PAF49 with Pol I was confirmed by a coimmunoprecipitation assay. PAF49 was shown to interact with PAF53 through its N-terminal segment. This region of PAF49 also served as the target for TAF(I)48, the 48-kDa subunit of selectivity factor SL1. Concomitant with this interaction, the other components of SL1 also coimmunoprecipitated with PAF49. Specific transcription from the mouse rRNA promoter in vitro was severely impaired by anti-PAF49 antibody, which was overcome by addition of recombinant PAF49 protein. Moreover, overexpression of a deletion mutant of PAF49 significantly reduced pre-rRNA synthesis in vivo. Immunolocalization analysis revealed that PAF49 accumulated in the nucleolus of growing cells but dispersed to nucleoplasm in growth-arrested cells. These results strongly suggest that PAF49/ASE-1 plays an important role in rRNA transcription

    Splicing of distant peptide fragments occurs in the proteasome by transpeptidation and produces the spliced antigenic peptide derived from fibroblast growth factor-5

    No full text
    Peptide splicing is a newly described mode of production of antigenic peptides presented by MHC class I molecules, whereby two noncontiguous fragments of the parental protein are joined together after excision of the intervening segment. Three spliced peptides have been described. In two cases, splicing involved the excision of a short intervening segment of 4 or 6 aa and was shown to occur in the proteasome by transpeptidation resulting from the nucleophilic attack of an acyl-enzyme intermediate by the N terminus of the other peptide fragment. For the third peptide, which is derived from fibroblast growth factor-5 (FGF-5), the splicing mechanism remains unknown. In this case, the intervening segment is 40 aa long. This much greater length made the transpeptidation model more difficult to envision. Therefore, we evaluated the role of the proteasome in the splicing of this peptide. We observed that the spliced FGF-5 peptide was produced in vitro after incubation of proteasomes with a 49-aa-long precursor peptide. We evaluated the catalytic mechanism by incubating proteasomes with various precursor peptides. The results confirmed the transpeptidation model of splicing. By transfecting a series of mutant FGF-5 constructs, we observed that reducing the length of the intervening segment increased the production of the spliced peptide, as predicted by the transpeptidation model. Finally, we observed that trans-splicing (i.e., splicing of fragments from two distinct proteins) can occur in the cell, but with a much lower efficacy than splicing of fragments from the same protein

    Complete genome sequences of two highly divergent Japanese isolates of Plantago asiatica mosaic virus

    No full text
    Plantago asiatica mosaic virus (PlAMV) is a member of the genus Potexvirus and has an exceptionally wide host range. It causes severe damage to lilies. Here we report on the complete nucleotide sequences of two new Japanese PlAMV isolates, one from the eudicot weed Viola grypoceras (PlAMV-Vi), and the other from the eudicot shrub Nandina domestica Thunb. (PlAMV-NJ). Their genomes contain five open reading frames (ORFs), which is characteristic of potexviruses. Surprisingly, the isolates showed only 76.0–78.0 % sequence identity with each other and with other PlAMV isolates, including isolates from Japanese lily and American nandina. Amino acid alignments of the replicase coding region encoded by ORF1 showed that the regions between the methyltransferase and helicase domains were less conserved than other regions, with several insertions and/or deletions. Phylogenetic analyses of the full-length nucleotide sequences revealed a moderate correlation between phylogenetic clustering and the original host plants of the PlAMV isolates. This study revealed the presence of two highly divergent PlAMV isolates in Japan
    corecore