6,924 research outputs found

    Topological Solitons versus Nonsolitonic Phase Defects in a Quasi-One-Dimensional Charge-Density Wave

    Get PDF
    We investigated phase defects in a quasi-one-dimensional commensurate charge-density wave (CDW) system, an In atomic wire array on Si(111), using low temperature scanning tunneling microscopy. The unique fourfold degeneracy of the CDW state leads to various phase defects, among which intrinsic solitons are clearly distinguished. The solitons exhibit a characteristic variation of the CDW amplitude with a coherence length of about 4 nm, as expected from the electronic structure, and a localized electronic state within the CDW gap. While most of the observed solitons are trapped by extrinsic defects, moving solitons are also identified and their novel interaction with extrinsic defects is disclosed. DOI: 10.1103/PhysRevLett.109.246802X1115sciescopu

    Inclinations and black hole masses of Seyfert 1 galaxies

    Get PDF
    A tight correlation of black hole mass and central velocity dispersion has been found recently for both active and quiescent galaxies. By applying this correlation, we develop a simple method to derive the inclination angles for a sample of 11 Seyfert 1 galaxies that have both measured central velocity dispersions and black hole masses estimated by reverberation mapping. These angles, with a mean value of 36 degree that agrees well with the result obtained by fitting the iron Kα\alpha lines of Seyfert 1s observed with ASCA, provide further support to the orientation-dependent unification scheme of AGN. A positive correlation of the inclinations with observed FWHMs of Hβ\beta line and a possible anti-correlation with the nuclear radio-loudness have been found. We conclude that more accurate knowledge on inclinations and broad line region dynamics is needed to improve the black hole mass determination of AGN with the reverberation mapping technique.Comment: 12 pages including 4 figures, accepted for publication in The Astrophysical Journal Letter

    Visualizing Atomic-Scale Negative Differential Resistance in Bilayer Graphene

    Get PDF
    We investigate the atomic-scale tunneling characteristics of bilayer graphene on silicon carbide using the scanning tunneling microscopy. The high-resolution tunneling spectroscopy reveals an unexpected negative differential resistance (NDR) at the Dirac energy, which spatially varies within the single unit cell of bilayer graphene. The origin of NDR is explained by two near-gap van Hove singularities emerging in the electronic spectrum of bilayer graphene under a transverse electric field, which are strongly localized on two sublattices in different layers. Furthermore, defects near the tunneling contact are found to strongly impact on NDR through the electron interference. Our result provides an atomic-level understanding of quantum tunneling in bilayer graphene, and constitutes a useful step towards graphene-based tunneling devices. DOI: 10.1103/PhysRevLett.110.036804X11109sciescopu

    Carbon nanotube-reduced graphene oxide fiber with high torsional strength from rheological hierarchy control

    Get PDF
    High torsional strength fibers are of practical interest for applications such as artificial muscles, electric generators, and actuators. Herein, we maximize torsional strength by understanding, measuring, and overcoming rheological thresholds of nanocarbon (nanotube/graphene oxide) dopes. The formed fibers show enhanced structure across multiple length scales, modified hierarchy, and improved mechanical properties. In particular, the torsional properties were examined, with high shear strength (914 MPa) attributed to nanotubes but magnified by their structure, intercalating graphene sheets. This design approach has the potential to realize the hierarchical dimensional hybrids, and may also be useful to build the effective network structure of heterogeneous materials

    Augmented Reality (AR) in Urban Heritage Tourism.

    Get PDF
    New technology has been seen as a way for many businesses in the tourism industry to stay competitive and enhance their marketing campaign in various ways. AR has evolved as the buzzword of modern information technology and is gaining increasing attention in the media as well as through a variety of use cases. This trend is highly fostered across mobile applications as well as the hype of wearable computing triggered by Google’s Glass project to be launched in 2014. However, although research on AR has been conducted in various fields including the Urban Tourism industry, the majority of studies focus on technical aspects of AR, while others are tailored to specific applications. Therefore, this paper aims to examine the current implementation of AR in the Urban Tourism context and identifies areas of research and development that is required to guide the early stages of AR implementation in a purposeful way to enhance the tourist experience. The paper provides an overview of AR and examines the impacts AR has made on the economy. Hence, AR applications in Urban Tourism are identified and benefits of AR are discussed

    Promotion of ganoderic acid production in Ganoderma sinense by the addtion of an ether extract from Eupolyphaga sinensis, a medicinal insect

    Get PDF
    To screen stimulators from Chinese medicinal insects for mycelial growth and ganoderic acid (GA) production by Ganoderma sinense, the fungus was inoculated into the media with and without supplementation of a medicinal insect extract. The results show that all the water and ether extracts from the medicinal insects had no significant stimulatory effect on the biomass production (P > 0.05), and the extracts of Hydrotrechus remigator and Mylabris phalerata significantly inhibited the mycelial growth. However, the ether extract of Eupolyphaga sinensis at a concentration of 60 mgL-1 led to a significant increase in GA concentration from 187.6 ± 8.32 to 251.3 ± 11.27 mgL-1 (P < 0.01). Analysis of fermentation kinetics of G. sinense suggests that glucose concentration in the E. sinensis extract treatment group decreased more quickly as compared to the control group in the last 4 days of fermentation process, while the GA biosynthesis was promoted at the same period. However, the culture pH profile was not affected by the addition of the ether extract of E. sinensis.Key words: Medicinal fungus, Ganoderma sinense, submerged fermentation, Eupolyphaga sinensis, ganoderic acid

    Extremely stable graphene electrodes doped with macromolecular acid

    Get PDF
    Although conventional p-type doping using small molecules on graphene decreases its sheet resistance (Rsh), it increases after exposure to ambient conditions, and this problem has been considered as the biggest impediment to practical application of graphene electrodes. Here, we report an extremely stable graphene electrode doped with macromolecular acid (perfluorinated polymeric sulfonic acid (PFSA)) as a p-type dopant. The PFSA doping on graphene provides not only ultra-high ambient stability for a very long time (> 64 days) but also high chemical/thermal stability, which have been unattainable by doping with conventional small-molecules. PFSA doping also greatly increases the surface potential (similar to 0.8 eV) of graphene, and reduces its Rsh by similar to 56%, which is very important for practical applications. High-efficiency phosphorescent organic light-emitting diodes are fabricated with the PFSA-doped graphene anode (similar to 98.5 cd A(-1) without out-coupling structures). This work lays a solid platform for practical application of thermally-/chemically-/air-stable graphene electrodes in various optoelectronic devices

    Tubular structures of GaS

    Get PDF
    In this Brief Report we demonstrate, using density-functional tight-binding theory, that gallium sulfide (GaS) tubular nanostructures are stable and energetically viable. The GaS-based nanotubes have a semiconducting direct gap which grows towards the value of two-dimensional hexagonal GaS sheet and is in contrast to carbon nanotubes largely independent of chirality. We further report on the mechanical properties of the GaS-based nanotubes

    Remnant Fermi surface in the presence of an underlying instability in layered 1T-TaS_2

    Full text link
    We report high resolution angle-scanned photoemission and Fermi surface (FS) mapping experiments on the layered transition-metal dichalcogenide 1T-TaS_2 in the quasi commensurate (QC) and the commensurate (C) charge-density-wave (CDW) phase. Instead of a nesting induced partially removed FS in the CDW phase we find a pseudogap over large portions of the FS. This remnant FS exhibits the symmetry of the one-particle normal state FS even when passing from the QC-phase to the C-phase. Possibly, this Mott localization induced transition represents the underlying instability responsible for the pseudogapped FS
    corecore