2,101 research outputs found

    Improved H_2 Storage in Zeolitic Imidazolate Frameworks Using Li^+, Na^+, and K^+ Dopants, with an Emphasis on Delivery H_2 Uptake

    Get PDF
    We use grand canonical Monte Carlo simulations with first principles based force fields to show that alkali metal (Li^+, Na^+, and K^+)-doped zeolitic imidazolate frameworks (ZIFs) lead to significant improvement of H_2 uptake at room temperature. For example, at 298 K and 100 bar, Li-ZIF-70 totally binds to 3.08 wt % H_2, Na-ZIF-70 to 2.19 wt % H_2, and K-ZIF-70 to 1.62 wt % H_2, much higher than 0.74 wt % H_2 for pristine ZIF-70. Thus, the dopant effect follows the order of Li-ZIF > Na-ZIF > K-ZIF, which correlates with the H_2 binding energies to the dopants. Moreover, the total H_2 uptake is higher at lower temperatures: 243 K > 273 K > 298 K. On the other hand, delivery H_2 uptake, which is the difference between the total adsorption at the charging pressure (say 100 bar) and the discharging pressure (say 5 bar), is the important factor for practical on-board hydrogen storage in vehicles. We show that delivery H_2 uptake leads to Na-ZIF-70 (1.37 wt %) > K-ZIF-70 (1.25 wt %) > Li-ZIF-70 (1.07 wt %) > ZIF-70 (0.68 wt %), which is different from the trend from the total and excess uptake. Moreover, the delivery uptake increases with increasing temperatures (i.e., 298 K > 273 K > 243 K)! To achieve high delivery H_2 uptake at room temperature, the large free volume of ZIFs is required. We find that higher H_2 binding energy needs not always lead to higher delivery H_2 uptake

    Zeolitic Imidazolate Frameworks as H_2 Adsorbents: Ab Initio Based Grand Canonical Monte Carlo Simulation

    Get PDF
    We report the H_2 uptake behavior of 10 zeolitic−imidazolate frameworks (ZIFs), based on grand canonical Monte Carlo (GCMC) simulations. The force fields (FFs) describing the interactions between H_2 and ZIF in the GCMC were based on ab initio quantum mechanical (QM) calculations (MP2) aimed at correctly describing London dispersion (van der Waals attraction). Thus these predictions of H_2 uptake are based on first principles (non empirical) and hence applicable to new framework materials for which there is no empirical data. For each of these 10 ZIFs we report the total and excess H_2 adsorption isotherms up to 100 bar at both 77 and 300 K. We report the hydrogen adsorption sites in the ZIFs and the relationships between H_2 uptake amount, isosteric heat of adsorption (Q_(st)), surface area, and free volume. Our simulation shows that various ZIFs lead to a variety of H_2 adsorption behaviors in contrast to the metal−organic frameworks (MOFs). This is because ZIFs leads to greater diversity in the adsorption sites (depending on both organic linkers and zeolite topologies) than in MOFs. In particular, the ZIFs uptake larger amounts of H_2 at low pressure because of the high H_2 adsorption energy, and ZIFs have a variety of H_2 adsorption sites. For example, ZIF-11 has an initial Q_(st) value of ~15 kJ/mol, which is higher than observed for MOFs. Moreover, the preferential H_2 adsorption site in ZIFs is onto the organic linker, not nearby the metallic joint as is the case for MOFs

    Nitrogen doping of carbon nanoelectrodes for enhanced control of DNA translocation dynamics

    Full text link
    Controlling the dynamics of DNA translocation is a central issue in the emerging nanopore-based DNA sequencing. To address the potential of heteroatom doping of carbon nanostructures to achieve this goal, herein we carry out atomistic molecular dynamics simulations for single-stranded DNAs translocating between two pristine or doped carbon nanotube (CNT) electrodes. Specifically, we consider the substitutional nitrogen doping of capped CNT (capCNT) electrodes and perform two types of molecular dynamics simulations for the entrapped and translocating single-stranded DNAs. We find that the substitutional nitrogen doping of capCNTs stabilizes the edge-on nucleobase configurations rather than the original face-on ones and slows down the DNA translocation speed by establishing hydrogen bonds between the N dopant atoms and nucleobases. Due to the enhanced interactions between DNAs and N-doped capCNTs, the duration time of nucleobases within the nanogap was extended by up to ~ 290 % and the fluctuation of the nucleobases was reduced by up to ~ 70 %. Given the possibility to be combined with extrinsic light or gate voltage modulation methods, the current work demonstrates that the substitutional nitrogen doping is a promising direction for the control of DNA translocation dynamics through a nanopore or nanogap based of carbon nanomaterials.Comment: 11 pages, 4 figure

    Dynamical mean-field theory of Hubbard-Holstein model at half-filling: Zero temperature metal-insulator and insulator-insulator transitions

    Full text link
    We study the Hubbard-Holstein model, which includes both the electron-electron and electron-phonon interactions characterized by UU and gg, respectively, employing the dynamical mean-field theory combined with Wilson's numerical renormalization group technique. A zero temperature phase diagram of metal-insulator and insulator-insulator transitions at half-filling is mapped out which exhibits the interplay between UU and gg. As UU (gg) is increased, a metal to Mott-Hubbard insulator (bipolaron insulator) transition occurs, and the two insulating states are distinct and can not be adiabatically connected. The nature of and transitions between the three states are discussed.Comment: 5 pages, 4 figures. Submitted to Physical Review Letter

    A Suspended Nanogap Formed by Field-Induced Atomically Sharp Tips

    Get PDF
    A sub-nanometer scale suspended gap (nanogap) defined by electric field-induced atomically sharp metallic tips is presented. A strong local electric field (\u3e109 V=m) across micro/nanomachined tips facing each other causes the metal ion migration in the form of dendrite-like growth at the cathode. The nanogap is fully isolated from the substrate eliminating growth mechanisms that involve substrate interactions. The proposed mechanism of ion transportation is verified using real-time imaging of the metal ion transportation using an in situ biasing in transmission electron microscope (TEM). The configuration of the micro/nanomachined suspended tips allows nanostructure growth of a wide variety of materials including metals, metal-oxides, and polymers. VC 2012 American Institute of Physics

    Symmetry-Protected Solitons and Bulk-Boundary Correspondence in Generalized Jackiw-Rebbi Models

    Full text link
    We investigate the roles of symmetry and bulk-boundary correspondence in characterizing topological edge states in generalized Jackiw-Rebbi (JR) models. We show that time-reversal (TT), charge-conjugation (CC), parity (PP), and discrete internal field rotation (ZnZ_n) symmetries protect and characterize the various types of edge states such as chiral and nonchiral solitons via bulk-boundary correspondence in the presence of the multiple vacua. As two representative models, we consider the JR model composed of a single fermion field having a complex mass and the generalized JR model with two massless but interacting fermion fields. The JR model shows nonchiral solitons with the Z2Z_2 rotation symmetry, whereas it shows chiral solitons with the broken Z2Z_2 rotation symmetry. In the generalized JR model, only nonchiral solitons can emerge with only Z2Z_2 rotation symmetry, whereas both chiral and nonchiral solitons can exist with enhanced Z4Z_4 rotation symmetry. Moreover, we find that the nonchiral solitons have C,PC, P symmetries while the chiral solitons do not, which can be explained by the symmetry-invariant lines connecting degenerate vacua. Finally, we find the symmetry correspondence between multiply-degenerate global vacua and solitons such that T{T}, C{C}, P{P} symmetries of a soliton inherit from global minima that are connected by the soliton, which provides a novel tool for the characterization of topological solitons

    Influential factors in the out-of-class activities of Korean college students

    Get PDF
    This study aimed to explore who participates in what kinds of out-of-class activities in Korea\u27s universities. Therefore, the researchers examine whether differences exist in the pattern of out-of-class experiences according to the individual characteristics of the students, including gender, grade, household income level, high school performance and major. The researchers also aimed to examine the empirical evidence to determine the relationships between the patterns in out-of-class activities and the institutional characteristics of the university that the student attends. In terms of the institutional characteristics, this study is concerned with the location and size of the university. To explore these questions, the researchers analyzed K-NSSE data with hierarchical linear modeling. In sum, the findings of the statistical analysis of this study support the results of the preceding research in which different personal and institutional characteristics are related to five types of out-of-class activities. (DIPF/Orig.
    corecore