109 research outputs found

    Spatial spectrum and energy efficiency of random cellular networks

    Get PDF
    It is a great challenge to evaluate the network performance of cellular mobile communication systems. In this paper, we propose new spatial spectrum and energy efficiency models for Poisson-Voronoi tessellation (PVT) random cellular networks. To evaluate the user access the network, a Markov chain based wireless channel access model is first proposed for PVT random cellular networks. On that basis, the outage probability and blocking probability of PVT random cellular networks are derived, which can be computed numerically. Furthermore, taking into account the call arrival rate, the path loss exponent and the base station (BS) density in random cellular networks, spatial spectrum and energy efficiency models are proposed and analyzed for PVT random cellular networks. Numerical simulations are conducted to evaluate the network spectrum and energy efficiency in PVT random cellular networks.Comment: appears in IEEE Transactions on Communications, April, 201

    Control water waves by metagratings

    Full text link
    Metasurfaces and metagratings offers new platforms for electromagnetic wave control with significant responses. However, metasurfaces based on abrupt phase change and resonant structures suffer from the drawback of high loss and face challenges when applied in water waves. Therefore, the application of metasurfaces in water wave control is not ideal due to the limitations associated with high loss and other challenges. We have discovered that non-resonant metagratings exhibit promising effects in water wave control. Leveraging the similarity between bridges and metagratings, we have successfully developed a water wave metagrating model inspired by the Luoyang Bridge in ancient China. We conducted theoretical calculations and simulations on the metagrating and derived the equivalent anisotropic model of the metagrating. This model provides evidence that the metagrating has the capability to control water waves and achieve unidirectional surface water wave. The accuracy of our theory is strongly supported by the clear observation of the unidirectional propagation phenomenon during simulation and experiments conducted using a reduced version of the metagrating. It is the first time that the unidirectional propagation of water waves has been seen in water wave metagrating experiment. Above all, we realize the water wave metagrating experiment for the first time. By combining complex gratings with real bridges, we explore the physics embedded in the ancient building-Luoyang Bridge, which are of great significance for the water wave metagrating design, as well as the development and preservation of ancient bridges.Comment: 25 pages, 13 figure

    Histological and Biomechanical Evaluation of the Preserved Degenerative Dermis in Rat Autologous Skin Transplant Models after a Deep Second Degree Burn

    Get PDF
    To describe the histological and biomechanical changes of the preserved degenerative dermis in rat  autologous skin transplant models after a deep second-degree burn. 50 SD rats were divided into 5 groups  randomly of 10 rats of each: 7-days group, 9-days group, 14-days group, 21-days group, and 60-days group.  Deep second-degree burn wounds were prepared on the back of rats sized 3.5cm×3.5cm. Super tangential  excision was performed on the burn wound to preserve the degenerative dermis. Then, autologous epidermis  was grafted on the wound. After that, the histological changes of the preserved degenerative dermis tissues  and the graft areas were observed by macroscopic, light microscope and electron microscope in the 7, 9, 14,  21, 60 days after the operation. Moreover, the tensile properties of healing deeply burned rat skin were also  tested for each group at the same time points mentioned above. Results: (1) According to the macroscopic  observation, 7 days after the operation, the grafted skin was fused with the area of burn wound; A few hairs  were growing out on the skin at the 14th day; the injured skin recovered to normality by the 60th day. (2)  Hyaline change occurred in the preserved degenerative dermis tissues based on the observation by light  microscope. At the 7th day after operation, the dermis papillae and reticular layer could be discerned; by  the 21st day, the thickness, structures and morphology of grafted skin were similar to the normal tissues. (3)  7 days after operation, ballooning changes were observed by the electron microscope in the mitochondria  and endoplasmic reticulum of damaged cells and the number of the ribosomes was obviously reduced. The  subcellular wound improved continuously and approached normality by the 21st day. (4) 9 days after the  operation, the tensible strength and maximal strain of the grafting rat skin approached 70% and 90% of  natural skin, respectively. (5) 60 days after the operation, the tensile performance of the healing rat skin  recovered to the natural level. Conclusion: The histological and biomechanical changes of the denatured dermis of a deep second  degree burn wound may gradually recover to normality after being covered by autologous skin.

    Experimental research on the effect caused by effective stress change in injection production capacity of carbonate reservoir

    Get PDF
    The effective stress of the reservoir rock in the underground gas storage (UGS) changes with the multi cycle injection and production, which changes the physical characteristics of the reservoir and affects the injection production capacity of the UGS. Taking carbonate fracture-pore type gas storage as the research object, combined with the actual production of UGS, establish a set of experimental evaluation methods based on production characteristics; Core damage evaluator, overburden pressure porosimeter and scanning electron microscope are used to carry out experimental research on the impact of effective stress change on injection production capacity, quantitative analysis of reservoir internal characteristics, multi cycle injection and production and effect of effective stress action time on injection-production capacity. The results show, the experimental method established based on the actual production characteristics of the UGS, simulation of multi cycle injection and production by forward and reverse displacement, simulation of effective stress change under constant confining pressure and variable internal pressure, the experimental evaluation of the injection production capacity of the simulation multi cycle injection and production of the UGS is realized; The change of effective stress makes the reservoir seepage characteristics worse and the reservoir space smaller, injection-production coefficient (Szc) is positively correlated with the internal characteristic value of the reservoir, the larger the internal characteristic value of the reservoir, the higher Szc, and the better the injection production capacity; The injection production capacity of the UGS reservoir deteriorates with the increase of the injection production cycle, in the 4th injection production cycle, the injection production capacity of the UGS changes from moderately strong to moderately weak; The damage of effective stress to the injection production capacity of UGS mainly occurs in the initial stage of injection production, and the damage tends to be stable with the progress of injection production. The conclusion is that the change of effective stress in carbonate fracture-pore type gas storage makes the injection-production capacity of the reservoir worse, it is proposed to carry out reservoir reconstruction before the UGS is put into operation, and expand the capacity of the gas storage after the completion of the 3rd injection and production cycle, which can effectively offset the impact of the decline of injection production capacity of the UGS and play the role of reservoir protection, it provides a constructive idea for improving the operation efficiency of the UGS

    Recovery Pattern of High-Frequency Acceleration Vestibulo-Ocular Reflex in Unilateral Vestibular Neuritis: A Preliminary Study

    Get PDF
    Objective: To explore the recovery pattern of the high-frequency acceleration vestibulo-ocular reflex (VOR) function in unilateral vestibular neuritis (UVN).Methods: Forty-seven consecutive patients with UVN were recruited within 10 days of symptom onset for this study. The high-frequency acceleration horizontal VOR function was assessed using the video head impulse test (vHIT). Patients returned for follow-up evaluation at ~6 months after the onset of symptoms. According to the dizziness handicap inventory questionnaire (DHI), the patients were classified into the normal to mild dizziness group (DHI score ≤30) and moderate to severe dizziness group (DHI score >30) at the follow-up. All the obtained horizontal vHIT gains and corrective saccades parameters were analyzed.Results: vHIT results showed a significantly horizontal VOR gain recovery in UVN patients at the follow-up on the lesion side (p < 0.01). A significantly reduction in the occurrence of corrective saccades (overt and covert) and velocity of corrective saccades (overt and covert) were observed at the follow-up (p < 0.05). At the follow-up, the normal to mild dizziness group (DHI score ≤30) had a significantly higher normal rate of VOR gain, the mean vHIT gains and occurrence of isolated covert saccades (P < 0.05). Furthermore, the occurrence of mixed saccades and the mean velocity of covert saccades were significantly lower in normal to mild dizziness group (P < 0.05).Conclusion: Apart from the recovery of the VOR gain, recovery pattern of corrective saccades can play a key role in vestibular compensate

    Reversible adsorption and confinement of nitrogen dioxide within a robust porous metal-organic framework

    Get PDF
    Nitrogen dioxide (NO2) is a major air pollutant causing significant environmental and health problems. We report reversible adsorption of NO2 in a robust metal–organic framework. Under ambient conditions, MFM-300(Al) exhibits a reversible NO2 isotherm uptake of 14.1 mmol g−1, and, more importantly, exceptional selective removal of low-concentration NO2 (5,000 to <1 ppm) from gas mixtures. Complementary experiments reveal five types of supramolecular interaction that cooperatively bind both NO2 and N2O4 molecules within MFM-300(Al). We find that the in situ equilibrium 2NO2 ↔ N2O4 within the pores is pressure-independent, whereas ex situ this equilibrium is an exemplary pressure-dependent first-order process. The coexistence of helical monomer–dimer chains of NO2 in MFM-300(Al) could provide a foundation for the fundamental understanding of the chemical properties of guest molecules within porous hosts. This work may pave the way for the development of future capture and conversion technologies

    Guest-Controlled Incommensurate Modulation in a Meta-Rigid Metal-Organic Framework Material

    Get PDF
    Structural transitions of host systems in response to guest binding dominate many chemical processes. We report an unprecedented type of structural flexibility within a meta-rigid material, MFM-520, which exhibits a reversible periodic-to-aperiodic structural transition resulting from a drastic distortion of a [ZnO4N] node controlled by the specific host-guest interactions. The aperiodic crystal structure of MFM-520 has no three-dimensional (3D) lattice periodicity but shows translational symmetry in higher-dimensional (3 + 2)D space. We have directly visualized the aperiodic state which is induced by incommensurate modulation of the periodic framework of MFM-520·H2O upon dehydration to give MFM-520. Filling MFM-520 with CO2 and SO2 reveals that, while CO2 has a minimal structural influence, SO2 can further modulate the structure incommensurately. MFM-520 shows exceptional selectivity for SO2 under flue-gas desulfurization conditions, and the facile release of captured SO2 from MFM-520 enabled the conversion to valuable sulfonamide products. MFM-520 can thus be used as a highly efficient capture and delivery system for SO2

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    On-Line Monitoring the Growth of E. coli or HeLa Cells Using an Annular Microelectrode Piezoelectric Biosensor

    No full text
    Biological information is obtained from the interaction between the series detection electrode and the organism or the physical field of biological cultures in the non-mass responsive piezoelectric biosensor. Therefore, electric parameter of the electrode will affect the biosensor signal. The electric field distribution of the microelectrode used in this study was simulated using the COMSOL Multiphysics analytical tool. This process showed that the electric field spatial distribution is affected by the width of the electrode finger or the space between the electrodes. In addition, the characteristic response of the piezoelectric sensor constructed serially with an annular microelectrode was tested and applied for the continuous detection of Escherichia coli culture or HeLa cell culture. Results indicated that the piezoelectric biosensor with an annular microelectrode meets the requirements for the real-time detection of E. coli or HeLa cells in culture. Moreover, this kind of piezoelectric biosensor is more sensitive than the sensor with an interdigital microelectrode. Thus, the piezoelectric biosensor acts as an effective analysis tool for acquiring online cell or microbial culture information
    corecore