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Abstract 

The Paleogene environment of today's semi-arid and arid Central Asia is poorly quantified and 

knowledge of the paleoelevation of northern Tibet remains elusive, yet both are crucially 

important for understanding inter-relationships between growth of the Tibetan Plateau and Asian 

monsoon development. Here, using the physiognomy of newly discovered early Oligocene (30.8 

Ma) fossil leaves from the Qaidam Basin, we reconstruct quantitatively the paleoclimate and 

paleoelevation of this critical part of northern Tibet. We find the Qaidam Basin floor was at its 

present height of ~3.3 km in the early Oligocene, higher than the rising Himalaya at that time, and 

experienced a temperate, moderately wet climate. Near-freezing (1.4 ± 3.5 °C) winters 

accompanied cool summers (~23 ± 2.9 °C). Annual precipitation exceeded 1000 mm with 
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subdued (non-monsoonal) seasonality in which summers were drier than winters. This finding 

challenges geodynamic models that envisage a Miocene or later uplift of northern Tibet and 

progressive uplift from the south. 

MAIN TEXT 

Introduction 

Abundant sedimentological evidence indicates that a step-wise drying in Central Asia began in 

the late Eocene (1) and persists today, but the underlying mechanisms for this aridification are 

poorly understood and contentious. Drying has been linked to Cenozoic global cooling (2), uplift 

of Tibet associated with India-Asia plate collision (3), or the retreat of the proto-Paratethys, a 

broad pre-Miocene epicontinental sea over central Eurasia (4, 5). Existing studies of Paleogene 

environments in Central Asia are mainly based on sedimentary (1-4) or stable isotope records (5). 

To understand fully the links between tectonics and climate change in the region requires 

quantification of past climate as well as a detailed knowledge of Paleogene topography, but 

currently both these critical components are poorly constrained.  

The Qaidam Basin is a key region for understanding the history and inter-linkages between 

Central Asia aridification and regional tectonism relating to the topographic development of the 

Tibetan Plateau because the basin hosts an extremely thick (∼12,000 m) continuous Cenozoic 

sedimentary succession ranging from the Paleocene to Quaternary (6, 7). Palynological data (8), 

as well as fossil fish (9), reveal a Neogene step-wise aridification of the Qaidam Basin, but the 

Paleogene vegetation, climate and surface elevation remain poorly known (10). Secular climate 

change is often invoked at the Eocene-Oligocene transition (EOT) to explain an observed shift in 

the paleo-environment (1), but coeval uplift in the region can also lead to a significant change in 

the local and regional climate signal, altering the sensitivity of the region to secular climate 

change at the EOT. Critically, the lack of a quantified uplift history and environment for northern 

Tibet, especially of the Qaidam Basin, hampers our understanding of the growth of the Tibetan 



 

Science Advances                                               Manuscript Template                                                                           Page 4 of 29 

 

Plateau both in terms of its pattern of growth and the underlying mechanisms driving its 

evolution. Most geodynamic models consider the rise of northern Tibet post-dates that of southern 

and central Tibet (11), but the uplift history of the region is obscure with stable isotope-based 

paleoaltimetry, known to be problematic in continental interiors (12), only indicating a major 

uplift of the Qaidam Basin after the middle Miocene (13). Well-dated paleontological evidence 

required to test this is rare, and as yet has not been applied in a paleoaltimetric context. 

Plant fossils are crucial to cross-validate and compare paleoclimatic inferences based on 

sedimentary evidence with those simulated by models. In addition to reflecting paleovegetation, 

plant fossil assemblages can also be used to estimate quantitatively the paleoclimate and 

paleoelevation using taxonomy-independent, leaf physiognomic methods (14-16). However, 

paleobotanical records, especially well-preserved plant megafossils, are rare in the Paleogene of 

Central Asia, with only western Kazakhstan so far yielding relevant (Oligocene) floras (17). Here 

we report a new well-preserved fossil plant assemblage from the early Oligocene of the northern 

Qaidam Basin, northeastern Tibet. A high-resolution magnetostratigraphic study (6) constrains 

the age of the flora to be ∼30.8 Ma. This fossil assemblage provides an excellent opportunity to 

evaluate the regional climate and topography at the northern margin of what is now the Tibetan 

Plateau during the early Oligocene, shortly after permanent ice sheets had formed in Antarctica 

(18) and relatively early in the India-Asia plate collisional process. To quantify the paleoclimate 

and paleoelevation of the Qaidam Basin floor in the early Oligocene we analyze leaf forms using 

the Climate-Leaf Analysis Multivariate Program (CLAMP) (19) (http://clamp.ibcas.ac.cn) 

combined with a coupled atmosphere-ocean general circulation climate model (GCM) configured 

for age-appropriate boundary conditions.  

 

Results  

Geological context and age constraints 

http://clamp.ibcas.ac.cn/
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The Qaidam Basin, with a present elevation ranging between 2.8 km and 3.2 km, is an 

intermontane non-marine basin bounded by the Altyn Tagh Shan in the northwest, the Qilian 

Shan in the northeast, and the Kunlun Shan in the south (Fig. 1). Cenozoic strata within the 

Qaidam Basin have been subdivided into seven lithostratigraphic units (6, 7). From the oldest to 

youngest these are: the Lulehe Formation (Fm.), the Xiaganchaigou Fm., the Shangganchaigou 

Fm., the Xiayoushashan Fm., the Shangyoushashan Fm., the Shizigou Fm., and the Qigequan 

Fm.. High-resolution magnetostratigraphy of a well-studied and documented sedimentary 

succession, constrained by a variety of paleontological data (ostracodes, pollen, leaves, 

mammals), defines the entire Dahonggou section (fig. S1). This section ranges in age from ~52 

Ma (the base of the Lulehe Fm.) to ~7 Ma (the lower Shizigou Fm.) (6) and hosts the plant fossils 

reported here, Crucially This chronology (6) is consistent with most biostratigraphic, 

magnetostratigraphic, and detrital low-temperature thermochronologic studies on the Qaidam 

strata, including a recent work based on the nearby Hongliugou section (Fang et al., 2019) in 

which the age of Shangganchaigou Formation is well constrained by mammal fossils and 

magnetostratigraphy. The clay minerals and iron oxides records of the Hongliugou section in the 

Qaidam Basin and the Xiejia section in the Xining Basin both exhibit in-phase change with 

Paleogene cooling (Fang et al., 2019), suggesting a reliable regional paleoenvironmental 

correlation, and in turn confirming the regional controls. The Eocene age of the Lulehe Fm. 

adopted here is also supported by the cooling ages observed from the surrounding mountains, as 

indicated by independent thermochronological dating (Jian et al., 2018; Du et al., 2018; Zhuang et 

al., 2018).  

A younger age for the base of Lulehe Fm. from a chronology derived from the Honggou section 

(20) is not adopted here because it is in conflict with other chronological results in the region, and 

also early Cenozoic source-to-sink processes observed throughout the whole Qaidam Basin (Lu et 

al., 2018; Song et al., 2019).  Crucially this younger age relied on fission track ages from only 2% 
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of detrital appatites and these were likely to have undergone partial annealing. This is evidenced 

by two samples (D54 and H52) where their respective minimum grain ages of 19.8 and 8.2 Ma 

are far younger than the supposed deposition ages of 23.7 and 21.3 Ma.  

Plant fossils were collected from the lower member of the ~1500 m-thick Shangganchaigou 

Formation (Fig. 2) exposed within the Dahonggou anticline at the northern margin of Qaidam 

Basin, ca. 45 km south of Daqaidam Town, Delingha City, Qinghai Province (Fig. 1). The 

Shangganchaigou Formation is an Oligocene to lower Miocene lacustrine and deltaic succession 

(6) and the layer that produces the plant fossils corresponds to C12n of the geomagnetic polarity 

time scale (GPTS) (Fig. 2) (21). Linear interpolation between thickness and age yield an age of 

~30.8 Ma (Rupelian) for these plant fossils.  

Plant fossil assemblage 

The fossil locality (37.4675 °N, 95.21639 °E) is at a present elevation of 3246 m above mean sea 

level (AMSL) and experiences a mean annual temperature of 1.9°C, and a mean annual 

precipitation of 82.7 mm as recorded at the Daqaidam meteorological station (37.85 °N, 95.37 °E, 

3173.2 m AMSL) (Table 1).  

A total of 728 plant megafossil specimens, predominantly leaves, were collected and most 

of them are well preserved with gross morphology and detailed venation being easily observed. 

Species diversity is low, yielding only 21 morphotypes of woody dicot leaves (Fig. 3), leafy 

shoots of Glyptostrobus (Fig. 3Y), a cupressaceous conifer that is native to South China today, 

fruits of Populus (Salicaceae) (Fig. 3X) and Cyclocarya (Juglandaceae) (Fig. 3V), as well as 

single-seeded pods of Podocarpium (Fig. 3W), which is an extinct genus of legume. The leaf 

fossil assemblage is dominated by Populus and Podocarpium. The paleoflora most likely 

represents a temperate deciduous predominantly broad-leaved woodland, and given the overall 

warmer temperatures in the early Oligocene (18) and the relatively low paleolatitude (39° N) 

(Table 1) this type of vegetation suggests, qualitatively, an elevated landscape. 

Commented [RAS2]: Maybe something like this? 
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Paleoclimate estimates 

The leaves of woody plants interact with and process the atmosphere and so have to possess 

adaptations suited to (and thus indicative of) their immediate environment (19, 22). These 

adaptations are reflected in leaf morphological (physiognomic) features that are preserved even 

when fossils lack organic material. Such features can be interpreted in terms of the predominant 

climate using multivariate statistical analysis and calibration data derived from modern vegetation 

growing under known quantified climates (http://clamp.ibcas.ac.cn). Unlike pollen, leaves cannot 

remain intact after undergoing significant pre-burial downslope transport, and so recognizable 

leaves must represent conditions altitudinally and spatially close to the burial site. Moreover, 

unlike geochemical proxies, leaf physiognomic climate signatures are immune to diagenetic 

alteration.  

The early Oligocene Qaidam flora plots within the PhysgAsia2 CLAMP calibration space 

(fig. S2), meaning that this calibration is valid to derive past environmental conditions from the 

Qaidam fossil flora. The paleoclimate estimates (Table 1) show that the northern Qaidam Basin 

experienced a temperate and wet climate during the early Oligocene, with a mean annual air 

temperature (MAT) of 11.6 ± 2.4 °C, a cold month mean temperature (CMMT) of 1.4 ± 3.5 °C, 

and growing season precipitation (GSP) of 1229 ± 643 mm. The CMMT was above freezing at 

1.4 °C, but the estimate has quite a large uncertainty (standard deviation 3.5 °C) so some short 

duration periodic frosts were likely. Notably, the fossil flora does not contain any obligate 

thermophyllic taxa such as palms (not used in the CLAMP analysis) that are intrinsically 

vulnerable to freezing, which supports the inference that frosts did occur from time to time. The 

CLAMP results also show a moderate seasonal variation in temperature, with the difference 

between the warm month mean temperature (WMMT) and CMMT being ~22 °C, notably less the 

present-day range of ~29 °C. 
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Apart from the warmer and less seasonal thermal regime, significant differences exist 

between the northern Qaidam Basin precipitation regime in the early Oligocene and that of the 

present-day. The growing season (7.4 ± 1.1 months) precipitation (GSP) estimate for the early 

Oligocene is more than 20 times than that of the present, but the seasonal variation in 

precipitation was much lower. Based on local climate records (Table 1) the northern Qaidam 

Basin today experiences a precipitation ratio for the 3 consecutive wettest months (3WET) to that 

in the 3 consecutive driest months (3DRY) of ~22:1, while in early Oligocene it was just ~3:1, 

which by any definition is not monsoonal. The precipitation seasonality in the early Oligocene 

may be lower than estimated since the standard deviation is high (400 mm) and 3WET may be 

overestimated (22), but CLAMP seasonal humidity estimates also show that the Qaidam summer 

was the driest season (notably so) as measured by both vapor pressure deficit (VPD) and potential 

evapotranspiration (PET) (Table 1). VPD is is the difference between the amount of moisture in 

the air at any given moment and how much moisture the air can hold when it is saturated, while 

PET is a measure of the capacity of the atmosphere to remove water from a surface through 

evaporation and transpiration and assumes an unlimited water supply. For the Oligocene Qaidam 

Basin we estimate the mean VPD ratio for the three summer months (VPD.Sum) to that for the 

three winter months (VPD.Win) was 5:1, while the PET measures indicate evapotranspiration in 

the warmest month was 6.1 times that of the coldest. Unlike relative humidity both VPD and PET 

have a linear relationship to plant transpiration. 

Paleoelevation 

To determine the Qaidam Basin floor elevation we use the moist enthalpy method, which is based 

on energy conservation principles (23), coupled with information from climate model simulations. 

Put simply, the difference between moist enthalpy at sea level (Hsea level) and that at an unknown 

elevation (Hhigh) divided by the acceleration due to gravity (g) yields the elevation difference (Z).  
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 Z = (Hsea level - Hhigh)/g        (1) 

 

The early Oligocene flora from the northern Qaidam Basin yields a CLAMP-derived moist 

enthalpy value of 307.5 ± 84 kJ/kg, but because during the early Oligocene the Qaidam Basin was 

in a continental interior setting there are no proximal sea level floras to obtain contemporaneous 

sea level enthalpy measures. To overcome this lack of a local sea level datum a paleo-sea surface 

moist enthalpy value for the northern Qaidam Basin was derived from a GCM simulation 

configured with Rupelian paleogeography (fig. S3) and boundary conditions, and adjusted using 

paleo-spatial trends in coastal coeval CLAMP-derived sea level moist enthalpy values (see 

Material and Methods section). Using Equation (1) this model-mediated sea level moist enthalpy 

value (340 kJ/kg) yielded a Qaidam Basin floor paleoelevation of ~3.3km ± 1.3 km, which is 

indistinguishable from that of the present-day. The uncertainty combines values arising from the 

scatter about the regression model in CLAMP and that arising from the latitudinal scatter in the 

model sea level moist enthalpies used in the paleopositional correction.  

The geological data used to construct the paleotopography used in the GCM simulation 

suggest surface height in the Qaidam area of ~ 3km. To test that this did not induce an element of 

circularity in our analysis we also ran experiments where the Qaidam region was given ‘artificial’ 

elevations ranging from 0km (sea level) to 4 km in 1 km increments. Differences in modelled sea 

level enthalpy from these experiments were remarkably small and well within model and proxy 

uncertainties. When the basin floor was set at 4 km as against 3 km this resulted in a simulated 

sea level moist enthalpy change of only 0.5 kJ/kg, or 52 m elevation difference, and when set to 2 

km the difference was 0.67 kJ/kg (68 m). This uncertainty rose by just 3.1 kJ/kg (318m) when a 1 

km elevation was used instead of 3 km. 

 

Discussion  



 

Science Advances                                               Manuscript Template                                                                           Page 10 of 29 

 

Temperate climate with notable thermal seasonality  

This similarity in elevation between the northern Qaidam Basin at 30.8 Ma and that of today 

makes comparisons between the Rupelian and modern climate intriguing. The Qaidam fossil plant 

assemblage yields a temperate climate, with MAT, WMMT and CMMTs significantly higher than 

those of the present-day; temperature estimates that are consistent with the taxonomic 

composition of the fossil flora, which is dominated by typical temperate species, e.g. Populus and 

Cyclocarya. Quantitative reconstruction of paleoclimate elsewhere in the Qaidam Basin and 

neighboring regions is lacking, but a recent CLAMP study of an early Oligocene flora in 

southeastern Tibet also reveals a warmer-than-present thermal regime despite being at a similar 

elevation (16). The early Oligocene floras in western Kazakhstan represent even warmer warm-

temperate vegetation (17) with some subtropical elements, and as such likely grew at an elevation 

significantly below 3 km.  

A warmer Qaidam Basin, even at a similar elevation to today, is consistent with greater 

overall global warmth in the early Oligocene. By 30.8 Ma the mean global temperature as 

estimated from marine data had increased after cooling across the Eocene-Oligocene transition 

(18). The CLAMP estimates for the early Oligocene Qaidam flora highlight a marked temperature 

seasonality, with some winter freezing likely, although the thermal range was smaller than that of 

the present-day. The difference between the WMMT and CMMT was ~21.5 °C and consistent 

with a continental climate. It is not surprising that the northern Qaidam Basin had a continental 

climate during the early Oligocene since it was distant from the retreated proto-Paratethys sea. In 

the early Eocene the proto-Paratethys sea attained its maximum area extending from the 

Mediterranean to the Tarim basin, but subsequently retreated westward after the early Eocene and 

by the Eocene-Oligocene transition (~34 Ma) had shrunk to the present position of the Caspian 

Sea (fig. S3) (24). While the thermal influence of the proto-Paratethys was limited, this did not 

apply to moisture transported by westerlies. 
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High precipitation with low seasonal variation 

In striking contrast to the arid regime in Qaidam Basin today, which is characterized by minimal 

but highly seasonal (summer ~58 mm, winter ~3 mm) precipitation and evaporation (Table 1), the 

estimated GSP in early Oligocene was 1229 ± 643 mm with low precipitation seasonality. 

Although the standard deviation of GSP estimates is high, even the minimum value of GSP (~590 

mm) is more than 10 times than that of the present-day (57.6 mm). This pattern of precipitation 

suggests that during late Paleogene moisture in Central Asia was derived by a westerly flux of 

humid air from the retreated proto-Paratethys (25). Our GCM simulation suggests that this effect 

was particularly evident in winter.  

Today's Asian monsoons are characterized by summer precipitation while the mid-latitude 

westerlies are associated with winter precipitation (26). The contemporaneous early Oligocene 

Mangkang flora from southeastern Tibetan Plateau also yields a similar 3WET/3DRY ratio of 

~3:1 using the CLAMP proxy (16). Physiognomic trait spectra of Eocene leaves from South 

China also suggest that a strong monsoon, with modern characteristics that is dominated by a 'sea-

breeze' monsoon circulation, developed much later across southern Asia (15).  

The high precipitation estimates in northern Qaidam indicate that the present-day high-

standing topography of Tian Shan, Altai Shan, Pamir and Altun Tagh ranges that tend to block 

westerly moisture did not have this effect in the early Oligocene and may suggest they had yet to 

achieve their current heights. This inference is supported by regional tectonics studies, which 

suggest the Tian Shan (27), Altai Shan (28) and Pamir (29) ranges exhibited limited relief before 

the Miocene. During most of the Oligocene, although retreated, the proto-Paratethys sea still 

covered a large area of central Eurasia (fig. S3), and could have been the source of moisture 

evident in the seasonal cycle (25). A western source for the high precipitation is also supported by 

the presence of well-developed early Oligocene vegetation in Kazakhstan (17) and 
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evapotranspiration from these thermophyllic broad-leaved forests could have further enhanced 

regional moisture recycling in Central Asia.  

A high Qaidam Basin during the early Oligocene 

The elevation of the northern Qaidam Basin at ~31 Ma is reconstructed to have been comparable 

to its present-day altitude of ~3,200 m. Palynological assemblages also suggest that the Xining 

Basin of northeastern Tibet had been surrounded by mountains as high as those of the present day 

since ~38 Ma (30).  

Although stable isotope-based paleoaltimetry points to a middle-late Miocene surface uplift 

of the Qaidam Basin (13), this is not in conflict with our findings. Stable isotope compositions are 

likely biased to where predominant fractionation takes place and in the case of meteoric waters 

this is inevitably at high elevation where rainout occurs as moisture-laden air is forced over 

topographic highs. Thus, the middle-late Miocene uplift may not have been that of the Qaidam 

Basin floor but that of the surrounding mountains. By contrast leaf fossils must indicate 

conditions and surface heights close to their burial site, i.e. in lowland sites of sediment 

accumulation within basins.  

Geologic evidence shows that the northern boundary of the Tibetan orogen was set in the 

Eocene following the initial India-Asia collision, although whether a high topography was built 

simultaneously in this region is unknown (31). Here we show that in northern Tibet a close-to-

present elevation of ~ 3 km for at least one basin floor had been achieved by the early Oligocene, 

a time when the central Himalaya were at an elevation of < 2.3 km (32). Moreover, by using the 

same moist enthalpy method as we use here, analysis of fossil leaf assemblages also shows that 

the southern Lhasa terrane (14, 32) and the southeastern margin (16) of the Tibet had reached 

their present-day elevations by the middle Miocene and early Oligocene respectively. Thus, a 

combination of stable isotope and phytopaleoaltimetry (10, 16, 32) is demonstrating that complex, 

and in places high, relief existed in Tibet before the rise of the Himalaya and that the modern high 
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Tibet is not solely the product of the India-Asia collision. This has implications for the amount of 

subducted greater India that contributed to the building of Tibet. 

Although we can say with confidence that parts of northern Tibet such as the Qaidam Basin 

were at ~ 3 km in the Paleogene, we cannot yet fully reconstruct the elevation history of the 

region and so understand Tibet-wide tectonic processes with any confidence. It could be that the 

Qaidam uplift long pre-dated the arrival of India and resulted from earlier terrane collisions. 

Alternatively, it may be that compressional forces from India were transmitted through southern 

and central Tibet so that the Qaidam region exhibited far-field deformation very early in the 

India-Asia collision process. It is also possible that the Qaidam Basin was high at 52 Ma, the start 

of Lulehe deposition, and underwent subsidence brought about by topographic loading during the 

simultaneous early Eocene deformation within the Qilian Shan and Altyn Tagh Shan (33). Future 

paleoaltimetric studies using well-dated fossil assemblages may yet answer these questions. 

 

Materials and Methods 

Fossil preparation 

The studied plant fossils are preserved as impressions with gross morphology and gross venation 

in finely laminated lacustrine grey-green mudstone and marlstone. Fossil specimens were 

prepared manually with a fine engraver knife to remove extraneous matrix, and photographed 

using a Nikon D810 digital camera with 60 mm Nikkor macrolens under oblique illumination. 

The studied fossil leaves were divided into morphotypes based on their leaf architecture, and only 

well-preserved specimens were identified at family or generic level.   

CLAMP 

To decode the environmental signals preserved in the early Oligocene Qaidam woody dicot leaf 

assemblage we used the Climate-Leaf Analysis Multivariate Program (CLAMP) proxy with the 

PhysgAsia2 leaf physiognomy training set as used in previous Tibetan and Himalayan studies (32, 
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34). However here we use a new climate calibration based on high spatial resolution (~1 km2) 

WorldClim2 climate data (35) to obtain a broader suite of well-quantified environmental 

variables. The results are presented in Table 1.  

CLAMP is a widely used taxonomy-independent, multivariate statistic technique based on 

canonical correspondence analysis (CCA), which correlates the leaf physiognomy of modern 

vegetation with climate data (19), and using these correlations determines the conditions 

prevailing during growth of the ancient vegetation as represented by fossil assemblages. The 

scoring of leaf physiognomic characters (data file S1) follows the standard protocols on the 

CLAMP website (http://clamp.ibcas.ac.cn). The studied specimens, typical examples of which are 

shown in Fig. 3, are housed in the Institute of Geological Survey, China University of 

Geosciences, Wuhan (S27-135-1~S27-135-728).  

The database used in CLAMP codes 31 leaf characters averaged over a minimum of 20 taxa. 

For calibration we used modern leaves comprising the PhysgAsia2 dataset (data file S2), which 

contains leaf data from both monsoon and non-monsoon exposed vegetation (34). The 

accompanying climate calibration used here is based on gridded ~1 km resolution Worldclim2 

data observed at the same locations as in the PhysgAsia2 dataset (data file S3). Using regression 

models in four-dimensional space (see “http://clamp.ibcas.ac.cn” for details) traditionally 

CLAMP has returned 11 climate variables shown in red and by an asterisk in Table 1, but here we 

added 15 more variables that show good correlations with leaf physiognomy to better explore the 

overall thermal and seasonal moisture regime. 

Paleoelevation estimates 

We applied the moist enthalpy method (23) to estimate the paleoaltitude of the northern Qaidam 

Basin during the early Oligocene. This technique derives from the observation that moist static 

energy is conserved as a parcel of air rises over topographic highs (23). Moist static energy is the 

product of moist enthalpy and potential energy, so differences in moist enthalpy between two 

http://clamp.ibcas.ac.cn/
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elevations can be resolved to elevation differences by dividing by the constant acceleration due to 

gravity (g) (Equation 1). Moist enthalpy is a climatic parameter related to both air temperature 

and moisture, and is well correlated with leaf physiognomy (19). 

Paleopositional adjustments 

Because moist enthalpy varies with latitude, and model and proxy values are unlikely to be 

identical, any systematic model and proxy-derived mean sea level moist enthalpy differences need 

accounted for in order to properly use a combination of model and proxy values to derive the 

paleoelevation for the Qaidam Basin. Any approach to achieve model-proxy parity should also 

accommodate, as far as possible, uncertainties in both proxy retrodictions and model simulations. 

Inevitably differences arise between moist enthalpy estimates derived from proxies and those 

predicted by climate models. These differences occur because models attempt to represent typical 

conditions for a given time slice that can span several million years. Moreover, the model values 

give the average climate over the area of the model grid cell (~3.75° longitude × 2.5° latitude) 

rather than at the exact location of the plant fossil assemblage and are subject to imprecisely 

known model boundary conditions (e.g. paleogeography and atmospheric composition), as well as 

uncertain model parameters. By contrast proxy estimates represent conditions averaged over 

much shorter time intervals and spatial spread, but are also subject to methodological 

uncertainties. 

Moist enthalpy tends to vary zonally (23) and GCMs tend to produce steeper latitudinal 

moist enthalpy trends than the proxy data (REF). To obtain a model-derived sea level moist 

enthalpy for the early Oligocene Qaidam Basin that can legitimately be compared to that derived 

from the fossil assemblage requires the model value to be adjusted consistent with the observed 

moist enthalpy at the paleosurface. To make this adjustment we selected from our pre-existing 

CLAMP archive roughly coeval Oligocene leaf assemblages thought to represent near sea level 

conditions across a 20°N to 50°N paleolatitudinal range (table S1). By comparing them with 
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paleo-sea level moist enthalpy values predicted by the Rupelian GCM we derived a simple linear 

regression of the differences to obtain a latitude-dependent adjustment value at the Qaidam 

paleolocation. The scatter in the model-proxy differences also allowed us to accommodate proxy 

model uncertainties, plus any variation in the proxy values due to the fossil assemblages not 

properly representing mean paleo sea level moist enthalpy. The derived regression equation: 

 y = -0.2622x + 3.645         (2)  

shows that at the Qaidam Basin palaeolocation the model underestimates moist enthalpy with 

respect to the proxy by 6.46 kJ/kg. Applying this the model-derived moist enthalpy rose from 

333.1 kJ/kg to 339.5 kJ/kg. 

Using equation (1) the paleoelevation of the early Oligocene Qaidam Basin (Z) was given 

by: 

 Z = (339.5-308.2)/9.81 = 3.19 km.  

Combining the CLAMP uncertainty (1 sigma) of 8 kJ/kg (Table 1) and that of the adjustment 

regression (10.9 kJ/kg) yielded a combined uncertainty of ±1.38 km.  

Climate Model 

The climate model used is HadCM3L, a fully coupled atmosphere-ocean GCM with a resolution 

of 3.75° longitude × 2.5° latitude, 19 vertical atmosphere levels and 20 ocean depth levels, and 

incorporates a dynamic vegetation model, TRIFFID. The simulation was run for > 6000 model 

years until ocean circulation equilibrated fully with no trend in the integrated ocean temperature. 

HadAM3, the atmospheric sub-model of HadCM3L using the equilibrated sea surface 

temperatures from the HadCM3L simulation, was used to determine paleo moist enthalpy at sea 

level. The paleogeography in the model was appropriate for the Rupelian (fig. S3), based on 

Getech Plc. reconstructions (0.5° x 0.5° longitude x latitude) (36) upscaled to the HadCM3L 

resolution (37). The HadCM3 family has seen extensive use in the Intergovernmental Panel on 

Climate Change (IPCC) 3rd to 5th Assessment reports (AR3-5), and importantly in this context 
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shows skill in representing both mean climate state compared to observations globally (38), as 

well as the Asian monsoon climate (36) where it out-performs most other contemporaneous 

models. 

 

H2: Supplementary Materials 

 

Fig. S1. Stratigraphic column of the Dahonggou section. The Dahonggou section 

studied here is measured on the southern limb of the Dahonggou anticline, northern 

Qaidam Basin. It is well exposed, more than 5 km thick, and consists of Lulehe 

Formation, Xia Ganchaigou Formation, Shang Ganchaigou Formation, Xia Youshashan 

Formation, Shang Youshashan Formation and Shizigou Formation from bottom upwards. 

The section is further subdivided into 584 beds. Dip direction varies southward from 20°–

30° in the anticline core, to 45°–55° in the middle part, and becomes shallower toward the 

top. 

 

Fig. S2. CLAMP plots showing the position of the early Oligocene Qaidam fossil leaf 

assemblage in PhysgASia2 calibration space. The fossil leaf assemblage is shown as a 

red dot, the modern vegetation samples as open black circles. Climate vectors are shown 

in blue. (a) canonical correspondence analysis (CCA) plot of axes 1 v 2. (b) CCA plot of 

axes 1 v 3. (c) CCA plot showing axes 2 v 3. The fossil assemblage lies within the 

PhysgAsia2 physiognomic space showing the calibration is appropriate for this 

assemblage. 
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Fig. S3. Rupelian GCM paleogeography (a), moist enthalpy (kJ/kg) at sea level (b), 

precipitation (mm/day) in December-February (c) and precipitation (mm/day) in 

June-August (d). The paleogeography is based on that developed by Getech Plc.   

 

Table S1. Climate variables for fossil sites used to achieve model proxy parity. The 

CLAMP-derived moist enthalpy values were used to adjust the model predicted sea level 

moist enthalpy for the northern Qaidam Basin in the early Oligocene. 

 

Data file S1. Leaf Physiognomic scores for the early Oligocene Qaidam fossils. 

Scoring protocols are given at http://clamp.ibcas.ac.cn. 

 

Data file S2. CLAMP PhysgAsia2 calibration data. This records the leaf physiognomy 

from 177 modern vegetation sites. 

 

Data file S3. CLAMP WC2Asia2 calibration data. This records the gridded climate 

data based on the WorldClim2 gridded observations between 1970 and 2000 for the 177 

vegetation sites forming PhysgAsia2. 
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Figures and Tables 

 

Fig. 1. Landform map of the Qaidam Basin. The fossil locality is indicated by a trifoliate leaf 

symbol. 

 

Fig. 2. Middle part of the Dahonggou section that preserves the studied plant fossils. (A) 

Stratigraphic column of the studied section. This is located in the lower member of 
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Shangganchaigou Formation, the northern Qaidam Basin. Shown is the 

magnetostratigraphic correlation, the chronology and the lithology of the studied section, 

as well as the chronologic and stratigraphic position of the plant fossil locality (indicated 

by a simple leaf). (B) Satellite image of the studied section showing the position of the 

plant fossil locality (indicated by a simple leaf). 

 

Fig. 3. Early Oligocene Qaidam plant fossils. Material recovered from the lower member of 

Shangganchaigou Formation in the Dahonggou section, northern Qaidam Basin. All scale 

bars = 1 cm. (A to U) Representative specimens of the 21 morphotypes of woody dicot 

leaves. (C, G, H) Populus. (O, R) Podocarpium. (V) Fruit of Cyclocarya. (W) Single-

seeded pod of Podocarpium. (X) Fruit of Populus. (Y) Leafy shoot of Glyptostrobus. (T) 

Cercidiphyllum. 

Table 1. The modern and paleoclimate of the northern Qaidam Basin during early Oligocene 

estimated using CLAMP WC2Asia2 Calibration dataset. Modern values are from the Daqaidam 

meteorological station (37.85° N, 95.37° E, 3173.2 m a.m.s.l.). The paleolatitude and longitude 

are derived from Getech Plc. Rupelian plate rotations used in the GCM. Climatic parameters are: 

mean annual temperature (MAT), warm month mean temperature (WMMT), cold month mean 

temperature (CMMT), length of growing season (LGS), growing season precipitation (GSP), 

mean monthly growing season precipitation (MMGSP), three wettest months precipitation 

(3WET), three driest months precipitation (3DRY), relative humidity (RH), specific humidity 

(SH), enthalpy (ENTH), annual mean vapor pressure deficit (VPD.ANN), mean vapor pressure 

during the three summer months (VPD.SUM), mean vapor pressure deficit during the three winter 

months (VPD.WIN), mean vapor pressure during the spring months (VPD.SPR), mean vapor 

pressure during the three fall months (VPD.AUT), mean annual potential evapotranspiration 

(PET.ANN), mean potential evapotranspiration during the warmest month (PET.WRM), mean 
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potential evapotranspiration during the coldest month (PET.CLD), mean minimum temperature 

during the warmest month (MINT.W), and the mean maximum temperature during the coldest 

month (MAXT.C). The growing season is defined as the period measured in months during which 

the mean temperature is ≥ 10°C. 
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VARIABLE UNITS QAIDAM QAIDAM UNCERTAINTY 

  

(Modern) (Fossil) ( ) 

Age Ma 0 30.8 - 

Latitude Decimal ° 37.85 37.47 - 

Longitude Decimal ° 95.37 95.22 - 

Paleolatitude Decimal ° - 38.55 - 

Paleolongitude Decimal ° - 88.19 - 

MAT* °C 1.9 11.6 2.4 

WMMT* °C 15.5 23 2.9 

CMMT* °C -13.4 1.4 3.5 

LGS* months 3 7.4 1.1 

GSP* cm 5.76 122.9 64.3 

MMGSP* cm 1.92 14 6.5 

3WET* cm 5.76 64.10 40 

3DRY* cm 0.26 22.5 9.8 

RH.ANN* % 35 62.9 10.2 

SH.ANN* g/kg - 5.8 1.8 

ENTH* kJ/kg - 307.5 8 

VPD.ANN hPa - 5.5 2.4 

VPD.SUM hPa - 10.0 3.5 

VPD.WIN hPa - 2 1.5 

VPD.SPR hPa - 3.3 4 

VPD.AUT hPa - 6.8 2 

PET.ANN cm - 989 162 

PET.WRM mm - 143 24.4 

PET.CLD mm - 23.4 13.9 

MINT.W °C - 17.6 2.9 

MAXT.C °C - 6.3 3.5 

Supplementary Materials 
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Fig. S1. Stratigraphic column of the Dahonggou section. The Dahonggou section studied here 

is measured on the southern limb of the Dahonggou anticline, northern Qaidam Basin. It is well 

exposed, more than 5 km thick, and consists of Lulehe Formation, Xia Ganchaigou Formation, 

Shang Ganchaigou Formation, Xia Youshashan Formation, Shang Youshashan Formation and 

Shizigou Formation from bottom upwards. The section is further subdivided into 584 beds. Dip 

direction varies southward from 20°–30° in the anticline core, to 45°–55° in the middle part, and 

becomes shallower toward the top. 

 

Fig. S2. CLAMP plots showing the position of the early Oligocene Qaidam fossil leaf 

assemblage in PhysgASia2 calibration space. The fossil leaf assemblage is shown as a red dot, 

the modern vegetation samples as open black circles. Climate vectors are shown in blue. (a) 

canonical correspondence analysis (CCA) plot of axes 1 v 2. (b) CCA plot of axes 1 v 3. (c) CCA 

plot showing axes 2 v 3. The fossil assemblage lies within the PhysgAsia2 physiognomic space 

showing the calibration is appropriate for this assemblage. 

 

Fig. S3. Rupelian GCM paleogeography (a), moist enthalpy (kJ/kg) at sea level (b), 

precipitation (mm/day) in December-February (c) and precipitation (mm/day) in June-

August (d). The paleogeography is based on that developed by Getech Plc.   

 

Table S1. Climate variables for fossil sites used to achieve model proxy parity. The CLAMP-

derived moist enthalpy values were used to adjust the model predicted sea level moist enthalpy 

for the northern Qaidam Basin in the early Oligocene. 

  

Data file S1. Leaf Physiognomic scores for the early Oligocene Qaidam fossils. Scoring 

protocols are given at http://clamp.ibcas.ac.cn. 
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Data file S2. CLAMP PhysgAsia2 calibration data. This records the leaf physiognomy from 

177 modern vegetation sites. 

 

Data file S3. CLAMP WC2Asia2 calibration data. This records the gridded climate data 

based on the WorldClim2 gridded observations between 1970 and 2000 for the 177 

vegetation sites forming PhysgAsia2. 


