1,327 research outputs found

    Cloning and characterization of a nitrite reductase gene related to somatic embryogenesis in Gossypium hirsutum

    Get PDF
    A nitrite reductase gene related to somatic embryogenesis was first cloned from Gossypium hirsutum. The cDNA sequence of the gene, named GhNiR, is 2,257 bp in length, with 254 bp of the 5’ untranslated region and 236 bp of the 3’ untranslated region. The open reading frame is 1,767 bp in length, encoding a deduced amino acid sequence of 588 residues with a molecular weight of 65.722 kDa and an isoelectric point of 7.07. Semi-quantitative RT-PCR analysis showed that the expression level of GhNiR was higher in embryogenic calli and somatic embryoids than in nonembryogenic calli among different somatic embryogenesis stages, and that the level of GhNiR mRNA was also higher in the cultivar with higher somatic embryogenesis ability. The catalytic GhNiR was verified by transformation in E. coli BL21 (DE3) strain with the recombinant expression vector pET-28A-GhNiR. NiR activity assay showedthat the crude GhNiR protein had obvious activity to NaNO2 substrate

    Intracisternal administration of NR2 subunit antagonists attenuates the nociceptive behavior and p-p38 MAPK expression produced by compression of the trigeminal nerve root

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We investigated the role of the central NMDA receptor NR2 subunits in the modulation of nociceptive behavior and p-p38 MAPK expression in a rat model with compression of the trigeminal nerve root. To address this possibility, changes in air-puff thresholds and pin-prick scores were determined following an intracisternal administration of NR2 subunit antagonists. We also examined effects of NR2 subunit antagonists on the p-p38 MAPK expression.</p> <p>Results</p> <p>Experiments were carried out using male Sprague-Dawley rats weighing (200-230 g). Compression of the trigeminal nerve root was performed under pentobarbital sodium (40 mg/kg) anesthesia. Compression of the trigeminal nerve root produced distinct nociceptive behavior such as mechanical allodynia and hyperalgesia. Intracisternal administration of 10 or 20 ΞΌg of D-AP5 significantly increased the air-puff threshold and decreased the pin-prick scores in a dose-dependent manner. The intracisternal administration of PPPA (1, 10 ΞΌg), or PPDA (5, 10 ΞΌg) increased the air-puff threshold and decreased the pin-prick scores ipsilateral as well as contralateral to the compression of the trigeminal root. Compression of the trigeminal nerve root upregulated the expression of p-p38 MAPK in the ipsilateral medullary dorsal horn which was diminished by D-AP5, PPPA, PPDA, but not Ro25-6981.</p> <p>Conclusions</p> <p>Our findings suggest that central NMDA receptor NR2 subunits play an important role in the central processing of trigeminal neuralgia-like nociception in rats with compression of the trigeminal nerve root. Our data further indicate that the targeted blockade of NR2 subunits is a potentially important new treatments strategy for trigeminal neuralgia-like nociception.</p

    Small noncoding RNA profiling across cellular and biofluid compartments and their implications for multiple sclerosis immunopathology

    Get PDF
    Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease affecting the central nervous system (CNS). Small non-coding RNAs (sncRNAs) and, in particular, microRNAs (miRNAs) have frequently been associated with MS. Here, we performed a comprehensive analysis of all classes of sncRNAs in matching samples of peripheral blood mononuclear cells (PBMCs), plasma, cerebrospinal fluid (CSF) cells, and cell-free CSF from relapsing-remitting (RRMS, n = 12 in relapse and n = 11 in remission) patients, secondary progressive (SPMS, n = 6) MS patients, and noninflammatory and inflammatory neurological disease controls (NINDC, n = 11; INDC, n = 5). We show widespread changes in miRNAs and sncRNA-derived fragments of small nuclear, nucleolar, and transfer RNAs. In CSF cells, 133 out of 133 and 115 out of 117 differentially expressed sncRNAs were increased in RRMS relapse compared to remission and RRMS compared to NINDC, respectively. In contrast, 65 out of 67 differentially expressed PBMC sncRNAs were decreased in RRMS compared to NINDC. The striking contrast between the periphery and CNS suggests that sncRNA-mediated mechanisms, including alternative splicing, RNA degradation, and mRNA translation, regulate the transcriptome of pathogenic cells primarily in the CNS target organ.Peer reviewe

    Phellinus linteus suppresses growth, angiogenesis and invasive behaviour of breast cancer cells through the inhibition of AKT signalling

    Get PDF
    The antitumour activity of a medicinal mushroom Phellinus linteus (PL), through the stimulation of immune system or the induction of apoptosis, has been recently described. However, the molecular mechanisms responsible for the inhibition of invasive behaviour of cancer cells remain to be addressed. In the present study, we demonstrate that PL inhibits proliferation (anchorage-dependent growth) as well as colony formation (anchorage-independent growth) of highly invasive human breast cancer cells. The growth inhibition of MDA-MB-231 cells is mediated by the cell cycle arrest at S phase through the upregulation of p27Kip1 expression. Phellinus linteus also suppressed invasive behaviour of MDA-MB-231 cells by the inhibition of cell adhesion, cell migration and cell invasion through the suppression of secretion of urokinase-plasminogen activator from breast cancer cells. In addition, PL markedly inhibited the early event in angiogenesis, capillary morphogenesis of the human aortic endothelial cells, through the downregulation of secretion of vascular endothelial growth factor from MDA-MB-231 cells. These effects are mediated by the inhibition of serine-threonine kinase AKT signalling, because PL suppressed phosphorylation of AKT at Thr308 and Ser473 in breast cancer cells. Taken together, our study suggests potential therapeutic effect of PL against invasive breast cancer

    Comparison of Artificial Neural Network and Logistic Regression Models for Predicting In-Hospital Mortality after Primary Liver Cancer Surgery

    Get PDF
    BACKGROUND: Since most published articles comparing the performance of artificial neural network (ANN) models and logistic regression (LR) models for predicting hepatocellular carcinoma (HCC) outcomes used only a single dataset, the essential issue of internal validity (reproducibility) of the models has not been addressed. The study purposes to validate the use of ANN model for predicting in-hospital mortality in HCC surgery patients in Taiwan and to compare the predictive accuracy of ANN with that of LR model. METHODOLOGY/PRINCIPAL FINDINGS: Patients who underwent a HCC surgery during the period from 1998 to 2009 were included in the study. This study retrospectively compared 1,000 pairs of LR and ANN models based on initial clinical data for 22,926 HCC surgery patients. For each pair of ANN and LR models, the area under the receiver operating characteristic (AUROC) curves, Hosmer-Lemeshow (H-L) statistics and accuracy rate were calculated and compared using paired T-tests. A global sensitivity analysis was also performed to assess the relative significance of input parameters in the system model and the relative importance of variables. Compared to the LR models, the ANN models had a better accuracy rate in 97.28% of cases, a better H-L statistic in 41.18% of cases, and a better AUROC curve in 84.67% of cases. Surgeon volume was the most influential (sensitive) parameter affecting in-hospital mortality followed by age and lengths of stay. CONCLUSIONS/SIGNIFICANCE: In comparison with the conventional LR model, the ANN model in the study was more accurate in predicting in-hospital mortality and had higher overall performance indices. Further studies of this model may consider the effect of a more detailed database that includes complications and clinical examination findings as well as more detailed outcome data

    Uric Acid Induces Renal Inflammation via Activating Tubular NF-ΞΊB Signaling Pathway

    Get PDF
    Inflammation is a pathologic feature of hyperuricemia in clinical settings. However, the underlying mechanism remains unknown. Here, infiltration of T cells and macrophages were significantly increased in hyperuricemia mice kidneys. This infiltration of inflammatory cells was accompanied by an up-regulation of TNF-Ξ±, MCP-1 and RANTES expression. Further, infiltration was largely located in tubular interstitial spaces, suggesting a role for tubular cells in hyperuricemia-induced inflammation. In cultured tubular epithelial cells (NRK-52E), uric acid, probably transported via urate transporter, induced TNF-Ξ±, MCP-1 and RANTES mRNA as well as RANTES protein expression. Culture media of NRK-52E cells incubated with uric acid showed a chemo-attractive ability to recruit macrophage. Moreover uric acid activated NF-ΞΊB signaling. The uric acid-induced up-regulation of RANTES was blocked by SN 50, a specific NF-ΞΊB inhibitor. Activation of NF-ΞΊB signaling was also observed in tubule of hyperuricemia mice. These results suggest that uric acid induces renal inflammation via activation of NF-ΞΊB signaling
    • …
    corecore