53,470 research outputs found

    Prediction of vertical bearing capacity of waveform micropile

    Get PDF
    This study proposes a predictive equation for bearing capacity considering the behaviour characteristics of a waveform micropile that can enhance the bearing capacity of a conventional micropile. The bearing capacity of the waveform micropile was analysed by a three-dimensional numerical model with soil and pile conditions obtained from the field and centrifuge tests. The load-transfer mechanism of the waveform micropile was revealed by the numerical analyses, and a new predictive equation for the bearing capacity was proposed. The bearing capacities of the waveform micropile calculated by the new equation were comparable with those measured from the field and centrifuge tests. This validated a prediction potential of the new equation for bearing capacity of waveform micropiles

    Squeezed states, time-energy uncertainty relation, and Feynman's rest of the universe

    Get PDF
    Two illustrative examples are given for Feynman's rest of the universe. The first example is the two-mode squeezed state of light where no measurement is taken for one of the modes. The second example is the relativistic quark model where no measurement is possible for the time-like separation fo quarks confined in a hadron. It is possible to illustrate these examples using the covariant oscillator formalism. It is shown that the lack of symmetry between the position-momentum and time-energy uncertainty relations leads to an increase in entropy when the system is different Lorentz frames

    Stokes Parameters as a Minkowskian Four-vector

    Get PDF
    It is noted that the Jones-matrix formalism for polarization optics is a six-parameter two-by-two representation of the Lorentz group. It is shown that the four independent Stokes parameters form a Minkowskian four-vector, just like the energy-momentum four-vector in special relativity. The optical filters are represented by four-by-four Lorentz-transformation matrices. This four-by-four formalism can deal with partial coherence described by the Stokes parameters. A four-by-four matrix formulation is given for decoherence effects on the Stokes parameters, and a possible experiment is proposed. It is shown also that this Lorentz-group formalism leads to optical filters with a symmetry property corresponding to that of two-dimensional Euclidean transformations.Comment: RevTeX, 22 pages, no figures, submitted to Phys. Rev.

    The language of Einstein spoken by optical instruments

    Get PDF
    Einstein had to learn the mathematics of Lorentz transformations in order to complete his covariant formulation of Maxwell's equations. The mathematics of Lorentz transformations, called the Lorentz group, continues playing its important role in optical sciences. It is the basic mathematical language for coherent and squeezed states. It is noted that the six-parameter Lorentz group can be represented by two-by-two matrices. Since the beam transfer matrices in ray optics is largely based on two-by-two matrices or ABCDABCD matrices, the Lorentz group is bound to be the basic language for ray optics, including polarization optics, interferometers, lens optics, multilayer optics, and the Poincar\'e sphere. Because the group of Lorentz transformations and ray optics are based on the same two-by-two matrix formalism, ray optics can perform mathematical operations which correspond to transformations in special relativity. It is shown, in particular, that one-lens optics provides a mathematical basis for unifying the internal space-time symmetries of massive and massless particles in the Lorentz-covariant world.Comment: LaTex 8 pages, presented at the 10th International Conference on Quantum Optics (Minsk, Belarus, May-June 2004), to be published in the proceeding

    Scalable Compression of Deep Neural Networks

    Full text link
    Deep neural networks generally involve some layers with mil- lions of parameters, making them difficult to be deployed and updated on devices with limited resources such as mobile phones and other smart embedded systems. In this paper, we propose a scalable representation of the network parameters, so that different applications can select the most suitable bit rate of the network based on their own storage constraints. Moreover, when a device needs to upgrade to a high-rate network, the existing low-rate network can be reused, and only some incremental data are needed to be downloaded. We first hierarchically quantize the weights of a pre-trained deep neural network to enforce weight sharing. Next, we adaptively select the bits assigned to each layer given the total bit budget. After that, we retrain the network to fine-tune the quantized centroids. Experimental results show that our method can achieve scalable compression with graceful degradation in the performance.Comment: 5 pages, 4 figures, ACM Multimedia 201

    Jones-matrix Formalism as a Representation of the Lorentz Group

    Get PDF
    It is shown that the two-by-two Jones-matrix formalism for polarization optics is a six-parameter two-by-two representation of the Lorentz group. The attenuation and phase-shift filters are represented respectively by the three-parameter rotation subgroup and the three-parameter Lorentz group for two spatial and one time dimensions. It is noted that the Lorentz group has another three-parameter subgroup which is like the two-dimensional Euclidean group. Possible optical filters having this Euclidean symmetry are discussed in detail. It is shown also that the Jones-matrix formalism can be extended to some of the non-orthogonal polarization coordinate systems within the framework of the Lorentz-group representation.Comment: RevTeX, 27 pages, no figures, to be published in J. Opt. Soc. Am.
    corecore