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This study proposes a predictive equation for bearing capacity considering the behaviour
characteristics of a waveform micropile that can enhance the bearing capacity of a conventional
micropile. The bearing capacity of the waveform micropile was analysed by a three-dimensional
numerical model with soil and pile conditions obtained from the field and centrifuge tests.
The load-transfer mechanism of the waveform micropile was revealed by the numerical analyses,
and a new predictive equation for the bearing capacity was proposed. The bearing capacities of the
waveform micropile calculated by the new equation were comparable with those measured from the
field and centrifuge tests. This validated a prediction potential of the new equation for bearing capacity
of waveform micropiles.
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NOTATION
A1 cross-sectional area
Bi effective diameter
D1 diameter of the shear keys
FN shaft resistance
Ki earth pressure coefficient

Nqi and Nγi bearing capacity factors
QBi bearing resistance
Qu ultimate bearing capacity

αbond bond strength
Φi internal friction angle

INTRODUCTION
Micropiles are small-diameter, bored cast-in-place piles that
insert high-strength steel reinforcement into grout with a
diameter of 100–300 mm, which were first used in the 1950s
in Italy. Micropiles can be easily used in construction
sites with limited space access and are widely used in
various applications such as new construction, foundation
reinforcement and seismic foundation because they can be
installed with relatively compact equipment.
Micropiles’ reinforcement transfers load from the upper

parts to the ground through the grout, and resist the loads by
frictional resistances between the grout and the surrounding
soil. This shaft resistance is considered as the micropiles’
design bearing capacity, and the end bearing capacity is
not taken into account due to the small diameter. For the
construction of the micropiles, bearing strata below com-
pressible soils are considered as the socket length to acquire
bearing capacities as shown in Fig. 1(a). However, this
construction procedure has a disadvantage that the pile
length has to be increased as the thickness of the soil strata

increases. Therefore, there have been studies to obtain
additional bearing capacities by modifying the shape of
the micropiles (Vickars & Clemence, 2000; Livneh &
El Naggar, 2008; Kim et al., 2016).

By extending these previous efforts, Jang & Han (2014,
2015) proposed a waveform micropile by integrating a
conventional micropile and the jet grouting method as
shown in Fig. 1(b). This method creates a wave-shape grout
named as the shear key by making some parts of the grout
larger, resulting in the enhancement of the shaft resistance at
the contact area between the grout and the soil. In general,
the diameter of the shear key D1 is 500 mm, the diameter
of the pile shaft D2 is 300 mm and the length of the shear
key L and the spacing S are defined as functions of the shear
key diameter D1. Jang & Han (2018, 2019) validated the
construction feasibility of this waveform micropile and
enhancement of shaft resistance at soil layers using waveform
shear keys. They also pointed out that it is necessary to have
a design guideline considering the shape of the pile as the key
design factor αbond suggested for the conventional micropile
(FHWA, 2005) is applicable only for the pile shaft and not
the shear key part of the waveform micropile. Therefore,
this study performed a three-dimensional (3D) numerical
simulation based on field test conditions and load test
results, and proposed predictive equations for design bearing
capacities considering the load-bearing mechanism from the
simulations.

NUMERICAL ANALYSIS MODEL
Modelling and input properties
A 3D finite-element method (FEM) software, Plaxis 3D
(Brinkgreve et al., 2012), was used for analysing the vertical
load resistance mechanism of micropiles. Soil conditions and
shapes of micropiles for numerical analyses were determined
according to the conditions of the field test performed
by Jang & Han (2018). The Mohr–Coulomb model,
an elasto-plastic model, was adopted. The material proper-
ties shown in Table 1 were estimated from the standard
penetration test (SPT) andN values were obtained by Jang &
Han (2018). When the elastic modulus E (Bowles, 1988;
KHBD (MCT, 2005)) and the internal friction angle Φ
(Peck et al., 1953; Dunham, 1954; Kitazawa et al., 1959;
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KHBD (MCT, 2005)) were calculated using existing
equations using N values, then the best-fitting value in the
numerical analysis was selectively used within the calculated
result ranges.
The Mohr–Coulomb model and the embedded beam

element were used for the grout and steel rebar of the
micropile, respectively. The embedded beam element is
appropriate for simulating the behaviour of the grout and
steel rebar simultaneously because it can define behaviour
with surrounding elements by using the interface values for
the vertical and horizontal shaft resistance and point
resistance (Brinkgreve et al., 2012).
The strength of a grout (c) is taken to be half of the

uniaxial compression strength for the 20 grout samples taken
from the waveform micropile during the field test by Jang &
Han (2018). After iterative analyses using a range of
the measured uniaxial strengths from 6·0 to 14·4 MPa,
c=8600 kPa was selected as the best estimate for the field
test results. Other material properties of the grout and steel
rebar are presented in Table 2.

Figure 2(a) shows the 3D finite-element mesh of the
waveform micropile and soil stratum. The detailed elements

of the waveform micropile and interface are shown in
Fig. 2(b). The size of the numerical model is 10 m in the x
and y directions and 15 m in the z direction. The boundary is
horizontally fixed in the x and y directions and the bottom
boundary is fixed in the vertical direction. A distance
between the pile tip and the bottom of the soil model is
30 times the diameter of the micropile shear key, 500 mm.
Therefore, one can judge that there are no boundary effects
while vertical loads are applied to the micropile.

The numerical model for the micropile consists of
elements of inner steel rebar, waveform grout and the
interface between the pile and soils. A strength reduction
factor of the interface element, Rint, can be considered as
that of granular and cohesive soils or less. A Rint value of
0·67 was used in this study (Garbacz, 2010).

Analysis of numerical modelling results
Numerical analyses were conducted to generate a load−
settlement curve of the pile using the displacement-control
method. The final value of the prescribed displacement in
the numerical analysis was 35 mm, equal to the final
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Fig. 1. Conceptual drawing of a conventional micropile and a waveform micropile: (a) conventional micropile, (b) waveform micropile
(source: modified from Jang & Han, 2019)

Table 1. Soil material properties for numerical analysis

Layer Unit weight Elastic modulus Poisson’s ratio Cohesion Internal friction

Type Depth: m γ: kN/m3 E: MPa Einc *: MPa/m ν c: kPa Φ: deg

Fill 0–4·5 18·0 22·8 — 0·3 — 30
Deposit 4·5–7·5 19·0 34·8 11·2 0·3 — 35
Weathered soil 7·5–8·0 20·0 51·6 248·4 0·3 10 33
Weathered rock 8·0–15·0 21·0 450·0 — 0·28 50 39

*Einc, increment of stiffness per unit of depth.
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displacement estimated from the field test. Figure 3 shows
that the load−settlement curve estimated by the numerical
analysis is in good agreement with that measured from the
field load test. This represents that the material properties
assigned to the model are appropriate.
The development of the micropiles’ resistance was

observed by ground displacement characteristics around
the pile until a final displacement of 35 mm. It is found that
the initial displacement of the pile occurs at the top and tip
of the pile as the load increases. After sufficient settlement,
the displacement of the ground at the shear keys and the
shaft under the ground remarkably increases. Particularly,
displacement below the shear keys becomes larger than that
near the shaft at the final displacement stage, which
corresponds to the ultimate bearing capacity.

Figure 4(a) shows the direction of the total displacement
of the soils near the pile at a final displacement of 35 mm.
Most of the soil displacement near the shaft takes place
vertically towards the bottom. On the contrary, displacement
at the upper part of the shear keys is focused towards the pile.
Soil displacement at the lower part of the shear keys is widely
distributed and has more horizontal components, resulting
in the resistance zones below the shear keys. The resistance
zone by a shear key can be defined as the triangle Δbcd as
shown in Fig. 4(b).

A DESIGN EQUATION FOR THE CALCULATION OF THE
BEARING CAPACITY OF THE WAVEFORM MICROPILE
The numerical simulation of the waveform micropile
revealed that the additional resistance against a vertical

Table 2. Material properties of the waveform micropile for numerical analysis

Material Elastic modulus,
E: GPa

Cohesion, c: kPa Unit weight,
γ: kN/m3

Poisson’s ratio, ν Diameter,
D: mm

Model

Steel rebar 210 — 78·5 0·1 300/500 Embedded beam
Grout 24 4300 23·5 0·167 63·5 Mohr−Coulomb

Waveform micropile

Fill (0 to –4·5 m)

Deposit ( ~ –7·5 m)
Weathered soil ( ~ –8·0 m)

Weathered rock ( ~ –15·0 m)

10 m

10
 m
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Fig. 2. Numerical model for the waveform micropile and soil stratum: (a) cross-section view of the 3D finite-element mesh for the
waveform micropile and soil stratum, (b) detailed view of the pile and interface
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Fig. 3. Load−settlement curves from the numerical analysis and
the field load test
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load develops below the shear keys located at certain depths.
Therefore, this study proposes a predictive model for bearing
capacity, considering both shaft resistance and the resistance
by shear keys.
The resistance in the resistance zone below the shear key is

divided into bearing resistance QB and shaft resistance FN as
shown in Fig. 5 according to the method for calculating the
capacities of helical piles with a plate-type helix attached
(Vickars & Clemence, 2000; Elsherbiny & El Naggar, 2013).
The angle of the shear key with respect to the vertical is
defined as α.
On the basis of the Terzaghi (1943) equation for bearing

capacities of shallow foundations, and considering an
effective diameter that affects soil conditions and resistance
at locations of shear keys, the bearing resistance QB in Fig. 5
is calculated as

QBi ¼ γ′i
Li

2
hiNqi A1 � A2ð Þ þ 1

2
γ′iBiNγi ð1Þ

where QBi is the bearing resistance below the ith shear key, γi
is the unit weight of the soil at the location of the ith shear
key, Li is the height of the ith shear key in Fig. 1(b), A1 is the
cross-sectional area considering the diameter (D1) of the
shear key, A2 is the cross-sectional area of the shaft, Bi is
the effective diameter below the ith shear key (= (D1−D2)/2)
and Nqi and Nγi are the bearing capacity factors at the
location of the ith shear key, which can be calculated using
the equations below (Meyerhof, 1951)

Nqi ¼ tan2 45þ θi
2

� �
eπ tan θi ð2Þ

: Total displacement |u|

a b

c d
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zone

(a) (b)

Fig. 4. Vertical load-bearing mechanism of the waveform micropile: (a) flow mechanism of total displacements, (b) resistance zones
formed by the shear key
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Nγi ¼ Nqi � 1
� �

tan 1�4θið Þ ð3Þ
where Φi is the internal friction angle of the soil layer at
which the ith shear key exists.
The shaft resistance, FN, is calculated using equation (4)

based on the equation for shaft resistance of deep foun-
dations, considering an internal friction angle, Φi, of the soil
contacting the resistance zone (Bowles, 1996)

FNi ¼ Kiγ′ihi tan θiπD1
Li

2
ð4Þ

where Ki is the earth pressure coefficient at rest
(Ko = 1− sinΦi) for a depth of the ith shear key and D1 is
the diameter of the shear keys.
For the shaft zone other than the shear keys, the ultimate

bearing capacity of a micropile, Pu, is calculated using

equation (5) according to the design and construction
manual for micropiles (FHWA, 2005)

Pu ¼ αbondπD2Si ð5Þ

E. L 0
(m)

5

8

Fill (0–4·5 m)
Medium dense to very
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Fig. 6. Detailed conditions of the field test (Jang & Han, 2018) used for the validation of the proposed calculation method: (a) ground
condition, (b) input parameters for the pile sections

Table 3. αbond values for sand suggested by the FHWA manual (FHWA, 2005)

Description Grout-to-ground bond ultimate strength: kPa

Type A Type B Type C Type D

Sand (some silt) (fine, loose−medium dense) 70–145 70–190 95–190 95–240
Sand (some silt, gravel) 95–215 120–360 145–360 145–385

Type A: Gravity grout only.
Type B: Pressure grouted through the casing during casing withdrawal.
Type C: Primary grout placed under gravity head, then one phase of secondary ‘global’ pressure grouting.
Type D: Primary grout placed under gravity head, then one or more phases of secondary ‘global’ pressure grouting.

Table 4. Calculation results for a vertical design load using the
field test data

Section PU: kN Section FN: kN QB: kN

Shaft S1 113·1 Shear key W1 7·1 77·1
S2 113·1 W2 14·2 136·3
S3 169·6 W3 20·0 329·1
S4 226·2 W4 25·1 545·6

∑S 622·0 ∑W 66·4 1088·1

Qu =ΣS+ΣW=1776·5 kN (QField* = 1764 kN)

*Measured values from the field test.
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where D2 is the diameter of a shaft, Si is the pile shaft length
of the ith layer in Fig. 1(b) and αbond is the bond strength at
the pile–ground interface. The αbond is an important factor
for determining design capacity, and it is determined based
on the FHWA manual, considering grout construction
methods such as gravity grouting (type A), pressure grouting
(type B), multiple repeatable grouting (types C and D),
pile socketing length and the type of soil layer.
Eventually, the ultimate bearing capacity, Qu, of a

micropile is calculated using the conventional equation
of the bearing capacity of a micropile (equation (5)),
the equation for bearing resistance (equation (1)) and the
equation for shaft resistance (equation (4))

Qu ¼ Pu þQB þ FN ð6Þ

VALIDATION OF THE PROPOSED METHOD WITH THE
EXPERIMENTAL RESULTS
For validation, the ultimate bearing capacities of micropiles
estimated by the proposed method were compared with the
results of the field test and centrifuge test conducted by Jang
& Han (2018) and Jang & Han (2019), respectively. For the
calculations, the internal friction of the soil layer was
estimated using the Dunham (1954) equation based on the
N value. Also, the N value was estimated by referring to the
CPTresult for the centrifuge test. The αbond corresponding to
the ground condition was decided from Table 3 suggested by
FHWA (2005).

Figure 6(a) shows details of the soil condition and the
pile sections for the field test (Jang & Han, 2018), which
resulted in the ultimate bearing capacity of 1764 kN.
The micropile can be divided into the shafts, S1–S4, and
the four shear keys,W1–W4 as shown in Fig. 6(b). Therefore,
the conventional micropile bearing capacity equation
(equation (5)) was used for S1–S4, and the proposed

equations (1) and (4) were used for the shear keys. The
estimated ultimate bearing capacity of 1776·5 kN matches
well with that from the field test. Table 4 summarises the
resistance values calculated on the circular shafts and the
shear keys.

In addition, Fig. 7 shows the result of the cone penetration
test (CPT) of silica sand and pile sections used for
the centrifuge test (Jang & Han, 2019). The estimated
ultimate bearing capacity of the waveform micropile from
the centrifuge test was 2167 kN. Table 5 summarises the
resistance values calculated for the shaft and shear key
sections, and a total resistance of 2017·4 kN. This calculated
bearing capacity load is also similar to that measured by the
centrifuge test.

CONCLUSIONS
To develop a predictive equation for bearing capacity, taking
into account the increase of shaft resistance of the waveform
micropile, this study developed a numerical model based on
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Fig. 7. Detailed conditions for the centrifuge test (Jang & Han, 2019) used for the validation of the proposed calculation method:
(a) ground condition, (b) input parameters for the pile sections

Table 5. Calculation results for a vertical design load using the
centrifuge data

Section PU: kN Section FN: kN QB: kN

Shaft S1 143·3 Shear key W1 10·5 77·5
S2 169·6 W2 15·6 125·1
S3 169·6 W3 27·0 301·8
S4 138·9 W4 39·7 610·4
S5 188·5

∑S 809·9 ∑W 92·8 1114·8

Qu =ΣS+ΣW=2017·5 kN (Qtest* = 2167·1 kN)

*Measured values from the centrifuge test.
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the field test conditions, and analysed the development
of vertical resistance of the waveform micropile using the
3D FEM.
The numerical analysis revealed that the waveform

micropile has a load resistance mechanism through shaft
resistance around the circular shaft and resistance below the
shear keys. Therefore, the factors that can consider the effects
of shear keys were derived, and a new predictive equation
considering this factor was proposed. Finally, the new
bearing capacity equation for micropiles was validated
using the results of a field test and a centrifuge test. The
bearing capacities calculated by the proposed equation were
in good agreement with those measured values from the tests.
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