10 research outputs found

    Transcriptome and Methylome Analysis Reveal Complex Cross-Talks between Thyroid Hormone and Glucocorticoid Signaling at Xenopus Metamorphosis

    No full text
    International audienceBackground: Most work in endocrinology focus on the action of a single hormone, and very little on the cross-talks between two hormones. Here we characterize the nature of interactions between thyroid hormone and glucocorticoid signaling during Xenopus tropicalis metamorphosis. Methods: We used functional genomics to derive genome wide profiles of methylated DNA and measured changes of gene expression after hormonal treatments of a highly responsive tissue, tailfin. Clustering classified the data into four types of biological responses, and biological networks were modeled by system biology. Results: We found that gene expression is mostly regulated by either T3 or CORT, or their additive effect when they both regulate the same genes. A small but non-negligible fraction of genes (12%) displayed non-trivial regulations indicative of complex interactions between the signaling pathways. Strikingly, DNA methylation changes display the opposite and are dominated by cross-talks. Conclusion: Cross-talks between thyroid hormones and glucocorticoids are more complex than initially envisioned and are not limited to the simple addition of their individual effects, a statement that can be summarized with the pseudo-equation: TH ∙ GC > TH + GC. DNA methylation changes are highly dynamic and buffered from genome expression

    A genetic variant controls interferon-β gene expression in human myeloid cells by preventing C/EBP-β binding on a conserved enhancer

    No full text
    International audienceInterferon β (IFN-β) is a cytokine that induces a global antiviral proteome, and regulates the adaptive immune response to infections and tumors. Its effects strongly depend on its level and timing of expression. Therefore, the transcription of its coding gene IFNB1 is strictly controlled. We have previously shown that in mice, the TRIM33 protein restrains Ifnb1 transcription in activated myeloid cells through an upstream inhibitory sequence called ICE. Here, we show that the deregulation of Ifnb1 expression observed in murine Trim33-/- macrophages correlates with abnormal looping of both ICE and the Ifnb1 gene to a 100 kb downstream region overlapping the Ptplad2/Hacd4 gene. This region is a predicted myeloid super-enhancer in which we could characterize 3 myeloid-specific active enhancers, one of which (E5) increases the response of the Ifnb1 promoter to activation. In humans, the orthologous region contains several single nucleotide polymorphisms (SNPs) known to be associated with decreased expression of IFNB1 in activated monocytes, and loops to the IFNB1 gene. The strongest association is found for the rs12553564 SNP, located in the E5 orthologous region. The minor allele of rs12553564 disrupts a conserved C/EBP-β binding motif, prevents binding of C/EBP-β, and abolishes the activation-induced enhancer activity of E5. Altogether, these results establish a link between a genetic variant preventing binding of a transcription factor and a higher order phenotype, and suggest that the frequent minor allele (around 30% worldwide) might be associated with phenotypes regulated by IFN-β expression in myeloid cells

    RNA Sequencing and Pathway Analysis Identify Important Pathways Involved in Hypertrichosis and Intellectual Disability in Patients with Wiedemann–Steiner Syndrome

    No full text
    International audienceA growing number of histone modifiers are involved in human neurodevelopmental disorders, suggesting that proper regulation of chromatin state is essential for the development of the central nervous system. Among them, heterozygous de novo variants in KMT2A, a gene coding for histone methyltransferase, have been associated with Wiedemann-Steiner syndrome (WSS), a rare developmental disorder mainly characterized by intellectual disability (ID) and hypertrichosis. As KMT2A is known to regulate the expression of multiple target genes through methylation of lysine 4 of histone 3 (H3K4me), we sought to investigate the transcriptomic consequences of KMT2A variants involved in WSS. Using fibroblasts from four WSS patients harboring loss-of-function KMT2A variants, we performed RNA sequencing and identified a number of genes for which transcription was altered in KMT2A-mutated cells compared to the control ones. Strikingly, analysis of the pathways and biological functions significantly deregulated between patients with WSS and healthy individuals revealed a number of processes predicted to be altered that are relevant for hypertrichosis and intellectual disability, the cardinal signs of this disease

    Regulated expression and function of the GABA B receptor in human pancreatic beta cell line and islets

    No full text
    International audienceG protein-coupled receptors are seven transmembrane signaling molecules that are involved in a wide variety of physiological processes. They constitute a large protein family of receptors with almost 300 members detected in human pancreatic islet preparations. However, the functional role of these receptors in pancreatic islets is unknown in most cases. We generated a new stable human beta cell line from neonatal pancreas. This cell line, named ECN90 expresses both subunits (GABBR1 and GABBR2) of the metabotropic GABAB receptor compared to human islet. In ECN90 cells, baclofen, a specific GABAB receptor agonist, inhibits cAMP signaling causing decreased expression of beta cell-specific genes such as MAFA and PCSK1, and reduced insulin secretion. We next demonstrated that in primary human islets, GABBR2 mRNA expression is strongly induced under cAMP signaling, while GABBR1 mRNA is constitutively expressed. We also found that induction and activation of the GABAB receptor in human islets modulates insulin secretion

    RNA Sequencing and Pathway Analysis Identify Important Pathways Involved in Hypertrichosis and Intellectual Disability in Patients with Wiedemann–Steiner Syndrome

    No full text
    International audienceA growing number of histone modifiers are involved in human neurodevelopmental disorders, suggesting that proper regulation of chromatin state is essential for the development of the central nervous system. Among them, heterozygous de novo variants in KMT2A, a gene coding for histone methyltransferase, have been associated with Wiedemann-Steiner syndrome (WSS), a rare developmental disorder mainly characterized by intellectual disability (ID) and hypertrichosis. As KMT2A is known to regulate the expression of multiple target genes through methylation of lysine 4 of histone 3 (H3K4me), we sought to investigate the transcriptomic consequences of KMT2A variants involved in WSS. Using fibroblasts from four WSS patients harboring loss-of-function KMT2A variants, we performed RNA sequencing and identified a number of genes for which transcription was altered in KMT2A-mutated cells compared to the control ones. Strikingly, analysis of the pathways and biological functions significantly deregulated between patients with WSS and healthy individuals revealed a number of processes predicted to be altered that are relevant for hypertrichosis and intellectual disability, the cardinal signs of this disease

    DNA hypermethylation driven by DNMT1 and DNMT3A favors tumor immune escape contributing to the aggressiveness of adrenocortical carcinoma

    No full text
    Background Adrenocortical carcinoma is rare and aggressive endocrine cancer of the adrenal gland. Within adrenocortical carcinoma, a recently described subtype characterized by a CpG island methylator phenotype (CIMP) has been associated with an especially poor prognosis. However, the drivers of CIMP remain unknown. Furthermore, the functional relation between CIMP and poor clinical outcomes of patients with adrenocortical carcinoma stays elusive. Results Here, we show that CIMP in adrenocortical carcinoma is linked to the increased expression of DNA methyltransferases DNMT1 and DNMT3A driven by a gain of gene copy number and cell hyperproliferation. Importantly, we demonstrate that CIMP contributes to tumor aggressiveness by favoring tumor immune escape. This effect could be at least partially reversed by treatment with the demethylating agent 5-azacytidine. Conclusions In sum, our findings suggest that co-treatment with demethylating agents might enhance the efficacy of immunotherapy and could represent a novel therapeutic approach for patients with high CIMP adrenocortical carcinoma.ISSN:1868-7075ISSN:1868-708

    Dynamic methylation of histone H3K18 in differentiating Theileria parasites

    No full text
    International audienceAbstract Lysine methylation on histone tails impacts genome regulation and cell fate determination in many developmental processes. Apicomplexa intracellular parasites cause major diseases and they have developed complex life cycles with fine-tuned differentiation events. Yet, apicomplexa genomes have few transcription factors and little is known about their epigenetic control systems. Tick-borne Theileria apicomplexa species have relatively small, compact genomes and a remarkable ability to transform leucocytes in their bovine hosts. Here we report enriched H3 lysine 18 monomethylation (H3K18me1) on the gene bodies of repressed genes in Theileria macroschizonts. Differentiation to merozoites (merogony) leads to decreased H3K18me1 in parasite nuclei. Pharmacological manipulation of H3K18 acetylation or methylation impacted parasite differentiation and expression of stage-specific genes. Finally, we identify a parasite SET-domain methyltransferase (TaSETup1) that can methylate H3K18 and represses gene expression. Thus, H3K18me1 emerges as an important epigenetic mark which controls gene expression and stage differentiation in Theileria parasites

    DNA ultra-sensitive quantification, a technology for studying HIV unintegrated linear DNA

    No full text
    International audienceUnintegrated HIV DNA represents between 20% and 35% of the total viral DNA in infected patients. Only the linear forms (unintegrated linear DNAs [ULDs]) can be substrates for integration and for the completion of a full viral cycle. In quiescent cells, these ULDs may be responsible for pre-integrative latency. However, their detection remains difficult due to the lack of specificity and sensitivity of existing techniques. We developed an ultra-sensitive, specific, and high-throughput technology for ULD quantification called DUSQ (DNA ultra-sensitive quantification) combining linker-mediated PCR and next-generation sequencing (NGS) using molecular barcodes. Studying cells with different activity levels, we determined that the ULD half-life goes up to 11 days in resting CD4+ T cells. Finally, we were able to quantify ULDs in samples from patients infected with HIV-1, providing a proof of concept for the use of DUSQ in vivo to track pre-integrative latency. DUSQ can be adapted to the detection of other rare DNA molecules

    Autoimmunity affecting the biliary tract fuels the immunosurveillance of cholangiocarcinoma

    No full text
    International audienceCholangiocarcinoma (CCA) results from the malignant transformation of cholangiocytes. Primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC) are chronic diseases in which cholangiocytes are primarily damaged. Although PSC is an inflammatory condition predisposing to CCA, CCA is almost never found in the autoimmune context of PBC. Here, we hypothesized that PBC might favor CCA immunosurveillance. In preclinical murine models of cholangitis challenged with syngeneic CCA, PBC (but not PSC) reduced the frequency of CCA development and delayed tumor growth kinetics. This PBC-related effect appeared specific to CCA as it was not observed against other cancers, including hepatocellular carcinoma. The protective effect of PBC was relying on type 1 and type 2 T cell responses and, to a lesser extent, on B cells. Single-cell TCR/RNA sequencing revealed the existence of TCR clonotypes shared between the liver and CCA tumor of a PBC host. Altogether, these results evidence a mechanistic overlapping between autoimmunity and cancer immunosurveillance in the biliary tract

    RNA Sequencing and Pathway Analysis Identify Important Pathways Involved in Hypertrichosis and Intellectual Disability in Patients with Wiedemann–Steiner Syndrome

    No full text
    International audienceA growing number of histone modifiers are involved in human neurodevelopmental disorders, suggesting that proper regulation of chromatin state is essential for the development of the central nervous system. Among them, heterozygous de novo variants in KMT2A, a gene coding for histone methyltransferase, have been associated with Wiedemann-Steiner syndrome (WSS), a rare developmental disorder mainly characterized by intellectual disability (ID) and hypertrichosis. As KMT2A is known to regulate the expression of multiple target genes through methylation of lysine 4 of histone 3 (H3K4me), we sought to investigate the transcriptomic consequences of KMT2A variants involved in WSS. Using fibroblasts from four WSS patients harboring loss-of-function KMT2A variants, we performed RNA sequencing and identified a number of genes for which transcription was altered in KMT2A-mutated cells compared to the control ones. Strikingly, analysis of the pathways and biological functions significantly deregulated between patients with WSS and healthy individuals revealed a number of processes predicted to be altered that are relevant for hypertrichosis and intellectual disability, the cardinal signs of this disease
    corecore