792 research outputs found
Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders
Online Mendelian Inheritance in Man (OMIM™) is a comprehensive, authoritative and timely knowledgebase of human genes and genetic disorders compiled to support human genetics research and education and the practice of clinical genetics. Started by Dr Victor A. McKusick as the definitive reference Mendelian Inheritance in Man, OMIM (http://www.ncbi.nlm.nih.gov/omim/) is now distributed electronically by the National Center for Biotechnology Information, where it is integrated with the Entrez suite of databases. Derived from the biomedical literature, OMIM is written and edited at Johns Hopkins University with input from scientists and physicians around the world. Each OMIM entry has a full-text summary of a genetically determined phenotype and/or gene and has numerous links to other genetic databases such as DNA and protein sequence, PubMed references, general and locus-specific mutation databases, HUGO nomenclature, MapViewer, GeneTests, patient support groups and many others. OMIM is an easy and straightforward portal to the burgeoning information in human genetics
Exposure to Phthalates in Neonatal Intensive Care Unit Infants: Urinary Concentrations of Monoesters and Oxidative Metabolites
OBJECTIVE: We previously demonstrated that among 54 infants in neonatal intensive care units, exposure to polyvinyl chloride plastic medical devices containing the plasticizer di(2-ethylhexyl) phthalate (DEHP) is associated with urinary concentrations of mono(2-ethylhexyl) phthalate (MEHP), a DEHP metabolite. In this follow-up report, we studied the neonates’ exposure to DEHP-containing devices in relation to urinary concentrations of two other DEHP metabolites, and to urinary concentrations of metabolites of dibutyl phthalate (DBP) and benzylbutyl phthalate (BzBP), phthalates found in construction materials and personal care products. MEASUREMENTS: A priori, we classified the intensiveness of these 54 infants’ exposure to DEHP-containing medical products. We measured three metabolites of DEHP in infants’ urine: MEHP and two of its oxidative metabolites, mono(2-ethyl-5-hydroxylhexyl) phthalate (MEHHP) and mono(2-ethyl-5-oxohexyl) phthalate (MEOHP). We also measured monobutyl phthalate (MBP), a metabolite of DBP, and monobenzyl phthalate (MBzP), a metabolite of BzBP. RESULTS: Intensiveness of DEHP-containing product use was monotonically associated with all three DEHP metabolites. Urinary concentrations of MEHHP and MEOHP among infants in the high-DEHP-intensiveness group were 13–14 times the concentrations among infants in the low-intensiveness group (p ≤ 0.007). Concentrations of MBP were somewhat higher in the medium-and high-DEHP-intensiveness group; MBzP did not vary by product use group. Incorporating all phthalate data into a structural equation model confirmed the specific monotonic association between intensiveness of product use and biologic measures of DEHP. CONCLUSION: Inclusion of the oxidative metabolites MEHHP and MEOHP strengthened the association between intensiveness of product use and biologic indices of DEHP exposure over that observed with MEHP alone
The Mouse Genome Database (MGD): mouse biology and model systems
The Mouse Genome Database, (MGD, http://www.informatics.jax.org/), integrates genetic, genomic and phenotypic information about the laboratory mouse, a primary animal model for studying human biology and disease. MGD data content includes comprehensive characterization of genes and their functions, standardized descriptions of mouse phenotypes, extensive integration of DNA and protein sequence data, normalized representation of genome and genome variant information including comparative data on mammalian genes. Data within MGD are obtained from diverse sources including manual curation of the biomedical literature, direct contributions from individual investigator's laboratories and major informatics resource centers such as Ensembl, UniProt and NCBI. MGD collaborates with the bioinformatics community on the development of data and semantic standards such as the Gene Ontology (GO) and the Mammalian Phenotype (MP) Ontology. MGD provides a data-mining platform that enables the development of translational research hypotheses based on comparative genotype, phenotype and functional analyses. Both web-based querying and computational access to data are provided. Recent improvements in MGD described here include the association of gene trap data with mouse genes and a new batch query capability for customized data access and retrieval
The interplay of microscopic and mesoscopic structure in complex networks
Not all nodes in a network are created equal. Differences and similarities
exist at both individual node and group levels. Disentangling single node from
group properties is crucial for network modeling and structural inference.
Based on unbiased generative probabilistic exponential random graph models and
employing distributive message passing techniques, we present an efficient
algorithm that allows one to separate the contributions of individual nodes and
groups of nodes to the network structure. This leads to improved detection
accuracy of latent class structure in real world data sets compared to models
that focus on group structure alone. Furthermore, the inclusion of hitherto
neglected group specific effects in models used to assess the statistical
significance of small subgraph (motif) distributions in networks may be
sufficient to explain most of the observed statistics. We show the predictive
power of such generative models in forecasting putative gene-disease
associations in the Online Mendelian Inheritance in Man (OMIM) database. The
approach is suitable for both directed and undirected uni-partite as well as
for bipartite networks
DrugBank 3.0: a comprehensive resource for ‘Omics’ research on drugs
DrugBank (http://www.drugbank.ca) is a richly annotated database of drug and drug target information. It contains extensive data on the nomenclature, ontology, chemistry, structure, function, action, pharmacology, pharmacokinetics, metabolism and pharmaceutical properties of both small molecule and large molecule (biotech) drugs. It also contains comprehensive information on the target diseases, proteins, genes and organisms on which these drugs act. First released in 2006, DrugBank has become widely used by pharmacists, medicinal chemists, pharmaceutical researchers, clinicians, educators and the general public. Since its last update in 2008, DrugBank has been greatly expanded through the addition of new drugs, new targets and the inclusion of more than 40 new data fields per drug entry (a 40% increase in data ‘depth’). These data field additions include illustrated drug-action pathways, drug transporter data, drug metabolite data, pharmacogenomic data, adverse drug response data, ADMET data, pharmacokinetic data, computed property data and chemical classification data. DrugBank 3.0 also offers expanded database links, improved search tools for drug–drug and food–drug interaction, new resources for querying and viewing drug pathways and hundreds of new drug entries with detailed patent, pricing and manufacturer data. These additions have been complemented by enhancements to the quality and quantity of existing data, particularly with regard to drug target, drug description and drug action data. DrugBank 3.0 represents the result of 2 years of manual annotation work aimed at making the database much more useful for a wide range of ‘omics’ (i.e. pharmacogenomic, pharmacoproteomic, pharmacometabolomic and even pharmacoeconomic) applications
Deriving a mutation index of carcinogenicity using protein structure and protein interfaces
With the advent of Next Generation Sequencing the identification of mutations in the genomes of healthy and diseased tissues has become commonplace. While much progress has been made to elucidate the aetiology of disease processes in cancer, the contributions to disease that many individual mutations make remain to be characterised and their downstream consequences on cancer phenotypes remain to be understood. Missense mutations commonly occur in cancers and their consequences remain challenging to predict. However, this knowledge is becoming more vital, for both assessing disease progression and for stratifying drug treatment regimes. Coupled with structural data, comprehensive genomic databases of mutations such as the 1000 Genomes project and COSMIC give an opportunity to investigate general principles of how cancer mutations disrupt proteins and their interactions at the molecular and network level. We describe a comprehensive comparison of cancer and neutral missense mutations; by combining features derived from structural and interface properties we have developed a carcinogenicity predictor, InCa (Index of Carcinogenicity). Upon comparison with other methods, we observe that InCa can predict mutations that might not be detected by other methods. We also discuss general limitations shared by all predictors that attempt to predict driver mutations and discuss how this could impact high-throughput predictions. A web interface to a server implementation is publicly available at http://inca.icr.ac.uk/
Mapping gene associations in human mitochondria using clinical disease phenotypes
Nuclear genes encode most mitochondrial proteins, and their mutations cause diverse and debilitating clinical disorders. To date, 1,200 of these mitochondrial genes have been recorded, while no standardized catalog exists of the associated clinical phenotypes. Such a catalog would be useful to develop methods to analyze human phenotypic data, to determine genotype-phenotype relations among many genes and diseases, and to support the clinical diagnosis of mitochondrial disorders. Here we establish a clinical phenotype catalog of 174 mitochondrial disease genes and study associations of diseases and genes. Phenotypic features such as clinical signs and symptoms were manually annotated from full-text medical articles and classified based on the hierarchical MeSH ontology. This classification of phenotypic features of each gene allowed for the comparison of diseases between different genes. In turn, we were then able to measure the phenotypic associations of disease genes for which we calculated a quantitative value that is based on their shared phenotypic features. The results showed that genes sharing more similar phenotypes have a stronger tendency for functional interactions, proving the usefulness of phenotype similarity values in disease gene network analysis. We then constructed a functional network of mitochondrial genes and discovered a higher connectivity for non-disease than for disease genes, and a tendency of disease genes to interact with each other. Utilizing these differences, we propose 168 candidate genes that resemble the characteristic interaction patterns of mitochondrial disease genes. Through their network associations, the candidates are further prioritized for the study of specific disorders such as optic neuropathies and Parkinson disease. Most mitochondrial disease phenotypes involve several clinical categories including neurologic, metabolic, and gastrointestinal disorders, which might indicate the effects of gene defects within the mitochondrial system. The accompanying knowledgebase (http://www.mitophenome.org/) supports the study of clinical diseases and associated genes
- …