489 research outputs found

    Cavity-Modulated Proton Transfer Reactions

    Get PDF
    Proton transfer is ubiquitous in many fundamental chemical and biological processes, and the ability to modulate and control the proton transfer rate would have a major impact on numerous quantum technological advances. One possibility to modulate the reaction rate of proton transfer processes is given by exploiting the strong light-matter coupling of chemical systems inside optical or nanoplasmonic cavities. In this work, we investigate the proton transfer reactions in the prototype malonaldehyde and Z-3-amino-propenal (aminopropenal) molecules using different quantum electrodynamics methods, in particular, quantum electrodynamics coupled cluster theory and quantum electrodynamical density functional theory. Depending on the cavity mode polarization direction, we show that the optical cavity can increase the reaction energy barrier by 10–20% or decrease the reaction barrier by ∼5%. By using first-principles methods, this work establishes strong light-matter coupling as a viable and practical route to alter and catalyze proton transfer reactions

    Role of Proton Diffusion in the Nonexponential Kinetics of Proton-Coupled Electron Transfer from Photoreduced ZnO Nanocrystals

    Get PDF
    Experiments have suggested that photoreduced ZnO nanocrystals transfer an electron and a proton to organic radicals through a concerted proton-coupled electron transfer (PCET) mechanism. The kinetics of this process was studied by monitoring the decay of the absorbance that reflects the concentration of electrons in the conduction bands of the nanocrystals. Interestingly, this absorbance exhibited nonexponential decay kinetics that could not be explained by heterogeneities of the nanoparticles or electron content. To determine if proton diffusion from inside the nanocrystal to reactive sites on the surface could lead to such nonexponential kinetics, herein this process is modeled using kinetic Monte Carlo simulations. These simulations provide the survival probability of a proton hopping among bulk, subsurface, and surface sites within the nanocrystal until it reaches a reactive surface site where it transfers to an organic radical. Using activation barriers predominantly obtained from periodic density functional theory, the simulations reproduce the nonexponential decay kinetics. This nonexponential behavior is found to arise from the broad distribution of lifetimes caused by different types of subsurface and surface sites. The longer lifetimes are associated with the proton becoming temporarily trapped in a subsurface site that does not have direct access to a reactive surface site due to capping ligands. These calculations suggest that movement of the protons rather than the electrons dominate the nonexponential kinetics of the PCET reaction. Thus, the impact of both bulk and surface properties of metal-oxide nanoparticles on proton conductivity should be considered when designing heterogeneous catalysts

    Kriteria Visibilitas Hilal Rukyatul Hilal Indonesia (Rhi) (Konsep, Kriteria, dan Implementasi)

    Full text link
    Telah dilaksanakan observasi hilal dan hilal tua selama periode Zulhijjah 1427–Zulhijjah 1430 H (Januari 2007–Desember 2009) oleh jejaring titik observasi Rukyatul Hilal Indonesia (RHI) yang merentang dari lintang 5° LU hingga 31° LS, dengan ataupun tanpa bantuan alat bantu optik. Observasi menghasilkan 174 data visibilitas yang terdiri dari 107 visibilitas positif dan 67 visibilitas negatif. Analisis korelasi linier Lag dengan Best Time Bulan menghasilkan definisi baru tentang hilal, yaitu Bulan pasca konjungsi yang memiliki Lag ≤ 24 menit hingga Lag ≤ 40 menit saat Matahari terbenam. Hubungan Best Time dan Lag memenuhi persamaan linear Yallop hanya untuk Lag ≤ 40 menit. Analisis korelasi aD dan DAz dengan metode least–square menghasilkan persamaan kriteria RHI aD ≥ 0,099 DAz2–1,490 DAz + 10,382 yang bentuknya hampir sama dengan kriteria LAPAN, namun sangat berbeda dibanding kriteria Fotheringham–Maunder maupun Bruin. Analisa komparatif menyimpulkan asumsi yang dipergunakan “kriteria” Imkanur Rukyat versi MABIMS dan konsep wujudul hilal tidak terbukti. Sebaliknya, terdapat kesesuaian antara hasil observasi dengan kriteria Odeh

    Theoretical Insights into Proton-Coupled Electron Transfer from a Photoreduced ZnO Nanocrystal to an Organic Radical

    Get PDF
    Proton-coupled electron transfer (PCET) at metal-oxide nanoparticle interfaces plays a critical role in many photocatalytic reactions and energy conversion processes. Recent experimental studies have shown that photoreduced ZnO nanocrystals react by PCET with organic hydrogen atom acceptors such as the nitroxyl radical TEMPO. Herein, the interfacial PCET rate constant is calculated in the framework of vibronically nonadiabatic PCET theory, which treats the electrons and transferring proton quantum mechanically. The input quantities to the PCET rate constant, including the electronic couplings, are calculated with density functional theory. The computed interfacial PCET rate constant is consistent with the experimentally measured value for this system, providing validation for this PCET theory. In this model, the electron transfers from the conduction band of the ZnO nanocrystal to TEMPO concertedly with proton transfer from a surface oxygen of the ZnO nanocrystal to the oxygen of TEMPO. Moreover, the proton tunneling at the interface is gated by the relatively lowfrequency proton donor−acceptor motion between the TEMPO radical and the ZnO nanocrystal. The ZnO nanocrystal and TEMPO are found to contribute similar amounts to the inner-sphere reorganization energy, implicating structural reorganization at the nanocrystal surface. These fundamental mechanistic insights may guide the design of metal-oxide nanocatalysts for a wide range of energy conversion processes

    Structure-Aware Calculation of Many-Electron Wave Function Overlaps on Multicore Processors

    Get PDF
    We introduce a new algorithm that exploits the relationship between the determinants of a sequence of matrices that appear in the calculation of many-electron wave function overlaps, yielding a considerable reduction of the theoretical cost. The resulting enhanced algorithm is embarrassingly parallel and our comparison against the (embarrassingly parallel version of) original algorithm, on a computer node with 40 physical cores, shows acceleration factors which are close to 7 for the largest problems, consistent with the theoretical difference

    Group theoretical analysis of symmetry breaking in two-dimensional quantum dots

    Full text link
    We present a group theoretical study of the symmetry-broken unrestricted Hartree-Fock orbitals and electron densities in the case of a two-dimensional N-electron single quantum dot (with and without an external magnetic field). The breaking of rotational symmetry results in canonical orbitals that (1) are associated with the eigenvectors of a Hueckel hamiltonian having sites at the positions determined by the equilibrium molecular configuration of the classical N-electron problem, and (2) transform according to the irreducible representations of the point group specified by the discrete symmetries of this classical molecular configuration. Through restoration of the total-spin and rotational symmetries via projection techniques, we show that the point-group discrete symmetry of the unrestricted Hartree-Fock wave function underlies the appearance of magic angular momenta (familiar from exact-diagonalization studies) in the excitation spectra of the quantum dot. Furthermore, this two-step symmetry-breaking/symmetry-restoration method accurately describes the energy spectra associated with the magic angular momenta.Comment: A section VI.B entitled "Quantitative description of the lowest rotational band" has been added. 16 pages. Revtex with 10 EPS figures. A version of the manuscript with high quality figures is available at http://calcite.physics.gatech.edu/~costas/uhf_group.html For related papers, see http://www.prism.gatech.edu/~ph274c

    Void-Assisted Ion-Paired Proton Transfer at Water-Ionic Liquid Interfaces.

    Get PDF
    At the water-trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate ([P14,6,6,6 ][FAP]) ionic liquid interface, the unusual electrochemical transfer behavior of protons (H(+) ) and deuterium ions (D(+) ) was identified. Alkali metal cations (such as Li(+) , Na(+) , K(+) ) did not undergo this transfer. H(+) /D(+) transfers were assisted by the hydrophobic counter anion of the ionic liquid, [FAP](-) , resulting in the formation of a mixed capacitive layer from the filling of the latent voids within the anisotropic ionic liquid structure. This phenomenon could impact areas such as proton-coupled electron transfers, fuel cells, and hydrogen storage where ionic liquids are used as aprotic solvents

    Mixing Quantum and Classical Mechanics

    Get PDF
    Using a group theoretical approach we derive an equation of motion for a mixed quantum-classical system. The quantum-classical bracket entering the equation preserves the Lie algebra structure of quantum and classical mechanics: The bracket is antisymmetric and satisfies the Jacobi identity, and, therefore, leads to a natural description of interaction between quantum and classical degrees of freedom. We apply the formalism to coupled quantum and classical oscillators and show how various approximations, such as the mean-field and the multiconfiguration mean-field approaches, can be obtained from the quantum-classical equation of motion.Comment: 31 pages, LaTeX2

    Bootstrapping the energy flow in the beginning of life.

    Get PDF
    This paper suggests that the energy flow on which all living structures depend only started up slowly, the low-energy, initial phase starting up a second, slightly more energetic phase, and so on. In this way, the build up of the energy flow follows a bootstrapping process similar to that found in the development of computers, the first generation making possible the calculations necessary for constructing the second one, etc. In the biogenetic upstart of an energy flow, non-metals in the lower periods of the Periodic Table of Elements would have constituted the most primitive systems, their operation being enhanced and later supplanted by elements in the higher periods that demand more energy. This bootstrapping process would put the development of the metabolisms based on the second period elements carbon, nitrogen and oxygen at the end of the evolutionary process rather than at, or even before, the biogenetic even
    corecore