43 research outputs found

    Sparsification and Separation of Deep Learning Layers for Constrained Resource Inference on Wearables

    Get PDF
    Deep learning has revolutionized the way sensor data are analyzed and interpreted. The accuracy gains these approaches o↵er make them attractive for the next generation of mobile, wearable and embedded sensory applications. However, state-of-the-art deep learning algorithms typically require a significant amount of device and processor resources, even just for the inference stages that are used to discriminate high-level classes from low-level data. The limited availability of memory, computation, and energy on mobile and embedded platforms thus pose a significant challenge to the adoption of these powerful learning techniques. In this paper, we propose SparseSep, a new approach that leverages the sparsification of fully connected layers and separation of convolutional kernels to reduce the resource requirements of popular deep learning algorithms. As a result, SparseSep allows large-scale DNNs and CNNs to run eciently on mobile and embedded hardware with only minimal impact on inference accuracy. We experiment using SparseSep across a variety of common processors such as the Qualcomm Snapdragon 400, ARM Cortex M0 and M3, and Nvidia Tegra K1, and show that it allows inference for various deep models to execute more eciently; for example, on average requiring 11.3 times less memory and running 13.3 times faster on these representative platforms

    An early resource characterization of deep learning on wearables, smartphones and internet-of-things devices

    Get PDF
    Detecting and reacting to user behavior and ambient context are core elements of many emerging mobile sensing and Internet-of-Things (IoT) applications. However, extracting accurate infer-ences from raw sensor data is challenging within the noisy and complex environments where these systems are deployed. Deep Learning { is one of the most promising approaches for overcom-ing this challenge, and achieving more robust and reliable infer-ence. Techniques developed within this rapidly evolving area of machine learning are now state-of-the-art for many inference tasks (such as, audio sensing and computer vision) commonly needed by IoT and wearable applications. But currently deep learning al-gorithms are seldom used in mobile/IoT class hardware because they often impose debilitating levels of system overhead (e.g., memory, computation and energy). Efforts to address this bar-rier to deep learning adoption are slowed by our lack of a system-atic understanding of how these algorithms behave at inference time on resource constrained hardware. In this paper, we present the-rst { albeit preliminary { measurement study of common deep learning models (such as Convolutional Neural Networks and Deep Neural Networks) on representative mobile and embed-ded platforms. The aim of this investigation is to begin to build knowledge of the performance characteristics, resource require-ments and the execution bottlenecks for deep learning models when being used to recognize categories of behavior and context. The results and insights of this study, lay an empirical foundation for the development of optimization methods and execution envi-ronments that enable deep learning to be more readily integrated into next-generation IoT, smartphones and wearable systems

    PD disease state assessment in naturalistic environments using deep learning

    Get PDF
    Management of Parkinson's Disease (PD) could be improved significantly if reliable, objective information about fluctuations in disease severity can be obtained in ecologically valid surroundings such as the private home. Although automatic assessment in PD has been studied extensively, so far no approach has been devised that is useful for clinical practice. Analysis approaches common for the field lack the capability of exploiting data from realistic environments, which represents a major barrier towards practical assessment systems. The very unreliable and infrequent labelling of ambiguous, low resolution movement data collected in such environments represents a very challenging analysis setting, where advances would have significant societal impact in our ageing population. In this work we propose an assessment system that abides practical usability constraints and applies deep learning to differentiate disease state in data collected in naturalistic settings. Based on a large data-set collected from 34 people with PD we illustrate that deep learning outperforms other approaches in generalisation performance, despite the unreliable labelling characteristic for this problem setting, and how such systems could improve current clinical practice

    A study of wrist-worn activity measurement as a potential real-world biomarker for late-life depression.

    Get PDF
    BACKGROUND: Late-life depression (LLD) is associated with a decline in physical activity. Typically this is assessed by self-report questionnaires and, more recently, with actigraphy. We sought to explore the utility of a bespoke activity monitor to characterize activity profiles in LLD more precisely. METHOD: The activity monitor was worn for 7 days by 29 adults with LLD and 30 healthy controls. Subjects underwent neuropsychological assessment and quality of life (QoL) (36-item Short-Form Health Survey) and activities of daily living (ADL) scales (Instrumental Activities of Daily Living Scale) were administered. RESULTS: Physical activity was significantly reduced in LLD compared with controls (t = 3.63, p < 0.001), primarily in the morning. LLD subjects showed slower fine motor movements (t = 3.49, p < 0.001). In LLD patients, activity reductions were related to reduced ADL (r = 0.61, p < 0.001), lower QoL (r = 0.65, p < 0.001), associative learning (r = 0.40, p = 0.036), and higher Montgomery-Ã…sberg Depression Rating Scale score (r = -0.37, p < 0.05). CONCLUSIONS: Patients with LLD had a significant reduction in general physical activity compared with healthy controls. Assessment of specific activity parameters further revealed the correlates of impairments associated with LLD. Our study suggests that novel wearable technology has the potential to provide an objective way of monitoring real-world function.This study was funded by an award from the UK Medical Research Council (G1001828/1)

    Interactivity : Using Expressy to Demonstrate Expressiveness in Touch-based Interactions

    Get PDF
    We present an interactivity demonstration of Expressy. A system that augments existing touchscreen devices with a variety of continuous expressive interaction capabilities, using movement data from a wrist-worn IMU. Our demonstration comprises a set of applications that show how the expressive touch interaction capabilities, offered by Expressy, can enable intuitive and meaningful interactions, in contexts including productivity, entertainment and lifestyle apps. This demo submission accompanies a full paper, describing a conceptual model of expressive touch interaction and the implementation and evaluation of Expressy. © 2016 Authors

    Large Scale Population Assessment of Physical Activity Using Wrist Worn Accelerometers: The UK Biobank Study

    Get PDF
    BACKGROUND: Physical activity has not been objectively measured in prospective cohorts with sufficiently large numbers to reliably detect associations with multiple health outcomes. Technological advances now make this possible. We describe the methods used to collect and analyse accelerometer measured physical activity in over 100,000 participants of the UK Biobank study, and report variation by age, sex, day, time of day, and season. METHODS: Participants were approached by email to wear a wrist-worn accelerometer for seven days that was posted to them. Physical activity information was extracted from 100Hz raw triaxial acceleration data after calibration, removal of gravity and sensor noise, and identification of wear / non-wear episodes. We report age- and sex-specific wear-time compliance and accelerometer measured physical activity, overall and by hour-of-day, week-weekend day and season. RESULTS: 103,712 datasets were received (44.8% response), with a median wear-time of 6.9 days (IQR:6.5-7.0). 96,600 participants (93.3%) provided valid data for physical activity analyses. Vector magnitude, a proxy for overall physical activity, was 7.5% (2.35mg) lower per decade of age (Cohen's d = 0.9). Women had a higher vector magnitude than men, apart from those aged 45-54yrs. There were major differences in vector magnitude by time of day (d = 0.66). Vector magnitude differences between week and weekend days (d = 0.12 for men, d = 0.09 for women) and between seasons (d = 0.27 for men, d = 0.15 for women) were small. CONCLUSIONS: It is feasible to collect and analyse objective physical activity data in large studies. The summary measure of overall physical activity is lower in older participants and age-related differences in activity are most prominent in the afternoon and evening. This work lays the foundation for studies of physical activity and its health consequences. Our summary variables are part of the UK Biobank dataset and can be used by researchers as exposures, confounding factors or outcome variables in future analyses.The UK Biobank Activity Project and the collection of activity data from participants was funded by the Wellcome Trust (https://wellcome.ac.uk/) and the Medical Research Council (http://www.mrc.ac.uk/). The analysis was supported by the British Heart Foundation Centre of Research Excellence at Oxford (http://www.cardioscience.ox.ac.uk/bhf-centre-of-research-excellence) [grant number RE/13/1/30181 to AD], the Li Ka Shing Foundation (http://www.lksf.org/) [to AD], the UK Medical Research Council (http://www.mrc.ac.uk/) [grant numbers MC_UU_12015/1 and MC_UU_12015/3 to NW and SB], the RCUK Digital Economy Research Hub on Social Inclusion through the Digital Economy (SiDE) (http://www.rcuk.ac.uk/) [EP/G066019/1 to NH], the EPSRC Centre for Doctoral Training in Digital Civics (https://www.epsrc.ac.uk/)[EP/L016176/1 to DJ], and the National Institute for Health Research (http://www.nihr.ac.uk/) [SRF-2011-04-017 to MIT]. The MRC and Wellcome Trust played a key role in the decision to establish UK Biobank, and the accelerometer data collection. No funding bodies had any role in the analysis, decision to publish, or preparation of the manuscript

    Deep, Convolutional, and Recurrent Models for Human Activity Recognition using Wearables

    No full text
    corecore