759 research outputs found

    Irradiation study of a fully monolithic HV-CMOS pixel sensor design in AMS 180 nm

    Full text link
    High-Voltage Monolithic Active Pixel Sensors (HV-MAPS) based on the 180 nm HV-CMOS process have been proposed to realize thin, fast and highly integrated pixel sensors. The MuPix7 prototype, fabricated in the commercial AMS H18 process, features a fully integrated on-chip readout, i.e. hit-digitization, zero suppression and data serialization. It is the first fully monolithic HV-CMOS pixel sensor that has been tested for the use in high irradiation environments like HL-LHC. We present results from laboratory and test beam measurements of MuPix7 prototypes irradiated with neutrons (up to 5.0⋅1015 neq/cm25.0\cdot10^{15}{\,\rm{n}_{\rm{eq}}/cm^2}) and protons (up to 7.8⋅1015 protons/cm27.8\cdot 10^{15} \,\rm{protons}/cm^2) and compare the performance with non-irradiated sensors. Efficiencies well above 90 % at noise rates below 200 Hz per pixel are measured. A time resolution better than 22 ns is measured for all tested settings and sensors, even at the highest irradiation fluences. The data transmission at 1.25 Gbit/s and the on-chip PLL remain fully functional

    The MuPix Telescope: A Thin, high Rate Tracking Telescope

    Full text link
    The MuPix Telescope is a particle tracking telescope, optimized for tracking low momentum particles and high rates. It is based on the novel High-Voltage Monolithic Active Pixel Sensors (HV-MAPS), designed for the Mu3e tracking detector. The telescope represents a first application of the HV-MAPS technology and also serves as test bed of the Mu3e readout chain. The telescope consists of up to eight layers of the newest prototypes, the MuPix7 sensors, which send data self-triggered via fast serial links to FPGAs, where the data is time-ordered and sent to the PC. A particle hit rate of 1 MHz per layer could be processed. Online tracking is performed with a subset of the incoming data. The general concept of the telescope, chip architecture, readout concept and online reconstruction are described. The performance of the sensor and of the telescope during test beam measurements are presented.Comment: Proceedings TWEPP 2016, 8 pages, 7 figure

    MuPix7 - A fast monolithic HV-CMOS pixel chip for Mu3e

    Full text link
    The MuPix7 chip is a monolithic HV-CMOS pixel chip, thinned down to 50 \mu m. It provides continuous self-triggered, non-shuttered readout at rates up to 30 Mhits/chip of 3x3 mm^2 active area and a pixel size of 103x80 \mu m^2. The hit efficiency depends on the chosen working point. Settings with a power consumption of 300 mW/cm^2 allow for a hit efficiency >99.5%. A time resolution of 14.2 ns (Gaussian sigma) is achieved. Latest results from 2016 test beam campaigns are shown.Comment: Proceedingsfor the PIXEL2016 conference, submitted to JINST A dangling reference has been removed from this version, no other change

    Measurement of UKRI-MPW0 after irradiation: an HV-CMOS prototype for high radiation tolerance

    Get PDF
    Abstract UKRI-MPW0 was developed to further improve the radiation tolerance of HV-CMOS pixel sensors. It implements a novel sensor cross-section that uses backside-only biasing to allow high substrate bias voltages &gt; 600 V. In this contribution, the measured results of irradiated UKRI-MPW0 samples are presented, including their current-to-voltage (I-V) characteristics, depletion depth and pixel performance. The chip is proved to have survived high radiation fluence of 3 × 1015 neq/cm2.</jats:p

    Design and preliminary results of a shunt voltage regulator for a HV-CMOS sensor in a 150 nm process

    Get PDF
    Abstract This paper presents the design and preliminary results of a shunt voltage regulator and two different bandgap reference designs for use with a monolithic High Voltage CMOS (HV-CMOS) sensor in a 150 nm technology node. One bandgap reference design is based on Bipolar Junction Transistors (BJTs) as the reference element of the circuit — the rest of the circuit is entirely designed with Metal–Oxide–Semiconductor Field-Effect Transistors (MOSFETs). The second bandgap reference design makes use of MOSFETs exclusively.</jats:p

    Edge-TCT evaluation of high voltage-CMOS test structures with unprecedented breakdown voltage for high radiation tolerance

    Get PDF
    Abstract This paper presents the edge Transient Current Technique (eTCT) measurements of passive test-structures on the UKRI-MPW0 pixel chip, a 280 µm thick proof-of-concept High Voltage-CMOS (HV-CMOS) device designed and fabricated in the LFoundry 150 nm technology node with a nominal substrate resistivity of 1.9 kΩ cm. Samples were irradiated up to 1 × 1016 1 MeV neq cm−2 with neutrons to observe the change in depletion depth and effective doping concentration with irradiation. A depletion depth of the sensor was found to be ≈50 µm at ≈−400 V at 1 × 1016 1 MeV neq cm−2. A stable damage introduction rate (g c ) was also calculated to be 0.011 ± 0.002 cm−1.</jats:p

    Combination of G-CSF and a TLR4 inhibitor reduce inflammation and promote regeneration in a mouse model of ACLF

    Get PDF
    BACKGROUND & AIMS: Acute-on-chronic liver failure (ACLF) is characterised by high short-term mortality, systemic inflammation, and failure of hepatic regeneration. Its treatment is an unmet medical need. This study was conducted to explore whether combining TAK-242, a Toll-like receptor-4 (TLR4) antagonist, with Granulocyte-Colony Stimulating Factor (G-CSF) targets inflammation whilst enhancing liver regeneration. METHODS: Two mouse models of ACLF were investigated. Chronic liver injury was induced by carbon tetrachloride followed by either lipopolysaccharide (LPS) or galactosamine (GalN) as extrahepatic or hepatic insults, respectively. G-CSF and/or TLR4-antagonist, TAK-242, were administered daily. The treatment duration was 24h and 5d in the LPS model and 48h in the GalN model, respectively. RESULTS: In a LPS-induced ACLF mouse model treatment with G-CSF was associated with a significant mortality of 66% after 48 hours compared with 0% without G-CSF. Addition of TAK-242 to G-CSF abrogated mortality (0%) and significantly reduced liver cell death, macrophage infiltration and inflammation. In the GalN model, both G-CSF and TAK-242, when used individually, reduced liver injury but their combination was significantly more effective. G-CSF treatment, with or without TAK-242, was associated with activation of the pro-regenerative and anti-apoptotic STAT3 pathway. LPS-driven ACLF was characterized by p21 over-expression suggesting hepatic senescence and inhibition of hepatocyte regeneration. While TAK-242 treatment mitigated the effect on senescence, G-CSF, when co-administered with TAK-242, resulted in a significant increase of markers of hepatocyte regeneration. CONCLUSION: TLR4 inhibition with TAK-242 rescued G-CSF-driven cell death, inflammation, enhanced tissue repair, and significantly induced regeneration thus suggesting that the combination of G-CSF and TAK-242 is a novel approach for the treatment of ACLF. LAY SUMMARY: The combinatorial therapy of Granulocyte-Colony Stimulating Factor and TAK-242, a Toll-like Receptor-4 inhibitor, achieves the dual aim of reducing hepatic inflammation and inducing liver regeneration for the treatment of acute-on-chronic liver failure

    Upgrading the beam telescopes at the DESY II Test Beam Facility

    Get PDF
    The DESY II Test Beam Facility is a key infrastructure for modern high energy physics detector development, providing particles with a small momentum spread in a range from 1 to 6 GeV to user groups e.g. from the LHC experiments and Belle II as well as generic detector R&D. Beam telescopes are provided in all three test beam areas as precise tracking reference without time stamping, with triggered readout and a readout time of >115 μ\mus . If the highest available rates are used, multiple particles are traversing the telescopes within one readout frame, thus creating ambiguities that cannot be resolved without additional timing layers. Several upgrades are currently investigated and tested: Firstly, a fast monolithic pixel sensor, the TelePix, to provide precise track timing and triggering on a region of interest is proposed to overcome this limitation. The TelePix is a 180 nm HV-CMOS sensor that has been developed jointly by DESY, KIT and the University of Heidelberg and designed at KIT. In this publication, the performance evaluation is presented: The difference between two amplifier designs is evaluated. A high hit detection efficiency of above 99.9 % combined with a time resolution of below 4 ns at negligible pixel noise rates is determined. Finally, the digital hit output to provide region of interest triggering is evaluated and shows a short absolute delay with respect to a traditional trigger scintillator as well as an excellent time resolution. Secondly, a fast LGAD plane has been proposed to provide a time resolution of a few 10 ps, which is foreseen to drastically improve the timing performance of the telescope. Time resolutions of below 70 ps have been determined in collaboration with the University of California, Santa Barbara
    • …
    corecore