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ABsTRACT. This paper presents the design and preliminary results of a shunt voltage regulator
and two different bandgap reference designs for use with a monolithic High Voltage CMOS (HV-
CMOS) sensor in a 150 nm technology node. One bandgap reference design is based on Bipolar
Junction Transistors (BJTs) as the reference element of the circuit — the rest of the circuit is
entirely designed with Metal-Oxide—Semiconductor Field-Effect Transistors (MOSFETs). The
second bandgap reference design makes use of MOSFETs exclusively.
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1 Introduction

High-Voltage CMOS (HV-CMOS) sensors are one of the main candidate technologies for future
tracking detectors in high luminosity colliders. In spite of their many advantages including material

budget, pixel granularity and radiation tolerance, these sensors need further research to boost their

performance parameters to meet the challenging requirements of future experiments [1]. UKRI-

MPWO is a proof-of-concept HV-CMOS pixel chip aimed at pushing the performance boundaries

of these sensors manufactured in the LFoundry 150 nm process. The layout view of UKRI-MPWO

is shows in figure 1.
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Figure 1. Layout view of UKRI-MPWO.



This chip implements a novel sensor cross-section optimised for backside biasing to
unprecented high voltages to improve radiation tolerance. High breakdown voltages beyond 600 V
have been measured before and after irradiation. UKRI-MPWO contains two active pixel matrices,
one with linear transistors and another one with enclosed layout transistors, aimed at testing the
novel sensor cross-section [2]. The chip implements, as well, a shunt voltage regulator to generate
the various power supply levels locally on-chip to reduce external circuitry and improve the noise
performance. The active matrix has been characterised using the Caribou DAQ system [3].

2 Design

2.1 Bipolar Junction Transistor (BJT) bandgap reference design

The schematic of the BJT based bandgap reference design is shown in figure 2 (left).
I ER
i L]

| N

Figure 2. BJT bandgap reference schematic and layout view.
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The circuit consists of a differential amplifier, startup circuit, diode connected PNP BJT
transistors and two poly-silicon resistors. The circuit presented provides first order tempera-
ture correction. The corresponding layout of the BJT based bandgap reference design is shown
in figure 2.

A common centroid topology is employed to improve matching between the BJTs. The BJT
bandgap reference makes use of Proportional To Absolute Temperature (PTAT), derived from
the emitter-base voltage differential of two BJTs, and Complementary To Absolute Temperature
(CTAT) design components (derived from the emitter-emitter-base voltage of a BJT [4]), which
cancel each other out and provide an output that is independent of temperature. The BJT bandgap
provides a reference voltage of 1.2V (close to the 1.12eV bandgap of silicon [5]). The supply
voltage (VDD) for this technology is 1.8V, a reference voltage of 1.2V leaves a comfortable
margin. Monte-Carlo simulations show a mean value of 1.191 V and a sigma value of 7.32 mV.

2.2 MOSFET bandgap reference design

A fully MOSFET based bandgap was designed and manufactured due to the fact that MOSFETSs in
the LFoundry 150 nm process have been extensively characterised for their radiation tolerance [6],



the same is not true of BJT transistors in this technology. The schematic (left) and layout view
(right) of the MOSFET based bandgap reference design are shown in figure 3. The MOSFET
bandgap reference consists of a startup circuit, differential amplifier, three diode connected NMOS
transistors and two poly-silicon resistors. The circuit presented provides first order temperature
correction. Simulations show the fully CMOS bandgap provides a reference voltage of 350 mV,
with a maximum voltage variation of 2 mV across an input range of 0.8 to 1.8 V and a maximum
voltage variation of 8.4 mV between —40 °C and 120 °C. Monte-Carlo simulations show a mean
value of 349.6 mV and a sigma value of 9.74 mV.
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Figure 3. MOSFET bandgap reference schematic and layout view.

2.3 Shunt regulator design

The shunt regulator topology offers an advantage over the traditional series voltage regulator in
that not all of the output current is required to flow through the regulator itself. This allows for
a smaller transistor and a reduced heat load on the circuit. It also provides the possibility of
performing serial powering [7]. The schematic (left) and layout view (right) of the shunt regulator
circuit are shown in figure 4.
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Figure 4. Shunt regulator schematic and layout view.



Three external resistors allow the shunt regulator output voltage and maximum current to be
adjusted for different applications. A reference voltage input (VREF) allows either the MOSFET
or BJT bandgap reference to be used to provide the reference level. The feedback network formed
by R1 and R2, as shown in figure 4, maintains a constant output voltage by adjusting the current
through the shunt transistor Q1. An increased current through Q1 causes an increased current
through the shunt resistor reducing the output voltage (and vice versa) as necessary to keep the
output voltage stable.

3 Experimental setup

The variation in output voltage as a function of input voltage, and output voltage as a function
of output current, were measured using a custom Python script to control a Keithley 2410 SMU
via Standard Commands for Programmable Instruments (SCPI) commands. The variation in
output voltage as a function of temperature was measured using a custom Proportional Integral
Derivative feedback (PID) [8] controlled temperature chamber consisting of a heater and Peltier
element controlled by an Arduino based custom PCB via a custom Python script. The custom PID
controlled temperature chamber is shown in figure 5.

Figure 5. Custom PID controlled temperature chamber.

4 Evaluation and measurements

4.1 Bipolar Junction Transistor (BJT) bandgap reference design

Simulations show a maximum voltage variation of 7 mV across an input range of 1.4 to 1.8 V
and a maximum voltage variation of 5 mV between —40 °C and 120 °C. The BJT based bandgap
reference has been characterised for variations in both input voltage and temperature. The results
are compared with simulation in figure 6.

It can be seen that there is a very close agreement between simulation and measurement for
both variations in input voltage and temperature. A maximum difference of 3.3 mV was observed
between simulation and measurements for variation in input voltage. For variations in temperature
a maximum difference of 1.2 mV was observed between simulation and measurements.
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Figure 6. Simulation and measurement results compared for variations in input voltage (left) and
temperature (right).

4.2 MOSFET bandgap reference design

A comparison of the results of simulation and measurements of the MOSFET bandgap reference
is presented in figure 7. It can be seen that there is a close agreement between simulation and
the measured results for both variations in input voltage (a maximum difference of 13.2 mV was
observed) and temperature (a maximum difference of 2.4 mV was observed).
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Figure 7. Simulation and measurement results compared for variations in input voltage (left) and
temperature (right).

The difference in performance between simulation and measurement for temperature
variation — figure 7 (right), may be due to an offset between the measured temperature and
the actual chip die temperature. This is due to the physical constraints for the placement of the 3
temperature sensors with respect to the UKRI-MPWO chip. The 3 temperature sensor readings are
averaged to measure the chip temperature.

4.3 Shunt regulator design

The results of simulation and measurements of the shunt regulator are presented in figure 8.
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Figure 8. Simulation and measurement results compared for variations in input voltage (left) and output
current (right).

It can be seen that there is a close agreement between simulation and measurement for both
variations in input voltage (a maximum difference of 4.2 mV was observed between simulation and
measurements) and output current (a maximum difference between simulation and measurement
of 2.3 mV @ 10 mA output current).

Table 1 shows the specifications of the 3 circuits presented.

Table 1. Summary of specifications.

Parameter BJT bandgapMOSFET bandgap Shunt regulator
Power consumption (uW) 478.8 478.8 Dependant on output current
Input voltage range (V) 1.4-1.8 0.8-1.8 0.8-1.8

Output voltage (V) 1.2 0.35 Adjustable

A Vout for input voltage range (mV) 7 2 Dependant on output

A Vout for temperature range (mV) 5 8.4 Dependant on output
Temperature range (°C) -40to +120 -40to +120 -40to +120

Area (pm X pm) 243 x 131 193 x 195 201 x 208

5 Conclusions

The BJT bandgap provides a reference voltage of 1.2V, with a maximum voltage variation of 7
mV across an input range of 1.4 to 1.8 V and a maximum voltage variation of 5 mV between
—40 °C and 120 °C. The fully CMOS bandgap provides a reference voltage of 350 mV, with a
maximum voltage variation of 2 mV across an input range of 0.8 to 1.8 V and a maximum voltage
variation of 8.4 mV between —40 °C and 120 °C. The combined power consumption of the BGRs is
478.8 pW. The power consumption of the shunt regulator is dependant on the output voltage chosen,
and the value chosen for the external shunt resistor.
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