10,370 research outputs found

    The Coronal Analysis of SHocks and Waves (CASHeW) Framework

    Full text link
    Coronal Bright Fronts (CBF) are large-scale wavelike disturbances in the solar corona, related to solar eruptions. They are observed in extreme ultraviolet (EUV) light as transient bright fronts of finite width, propagating away from the eruption source. Recent studies of individual solar eruptive events have used EUV observations of CBFs and metric radio type II burst observations to show the intimate connection between low coronal waves and coronal mass ejection (CME)-driven shocks. EUV imaging with the Atmospheric Imaging Assembly(AIA) instrument on the Solar Dynamics Observatory (SDO) has proven particularly useful for detecting CBFs, which, combined with radio and in situ observations, holds great promise for early CME-driven shock characterization capability. This characterization can further be automated, and related to models of particle acceleration to produce estimates of particle fluxes in the corona and in the near Earth environment early in events. We present a framework for the Coronal Analysis of SHocks and Waves (CASHeW). It combines analysis of NASA Heliophysics System Observatory data products and relevant data-driven models, into an automated system for the characterization of off-limb coronal waves and shocks and the evaluation of their capability to accelerate solar energetic particles (SEPs). The system utilizes EUV observations and models written in the Interactive Data Language (IDL). In addition, it leverages analysis tools from the SolarSoft package of libraries, as well as third party libraries. We have tested the CASHeW framework on a representative list of coronal bright front events. Here we present its features, as well as initial results. With this framework, we hope to contribute to the overall understanding of coronal shock waves, their importance for energetic particle acceleration, as well as to the better ability to forecast SEP events fluxes.Comment: Accepted for publication in the Journal of Space Weather and Space Climate (SWSC

    Towards a robust estimate of the merger rate evolution using near-IR photometry

    Get PDF
    We use a combination of deep, high angular resolution imaging data from the CDFS (HST/ACS GOODS survey) and ground based near-IR KsK_s images to derive the evolution of the galaxy major merger rate in the redshift range 0.2z1.20.2 \leq z \leq 1.2. We select galaxies on the sole basis of their J-band rest-frame, absolute magnitude, which is a good tracer of the stellar mass. We find steep evolution with redshift, with the merger rate (1+z)3.43±0.49\propto (1+z)^{3.43\pm0.49} for optically selected pairs, and (1+z)2.18±0.18\propto (1+z)^{2.18\pm0.18} for pairs selected in the near-IR. Our result is unlikely to be affected by luminosity evolution which is relatively modest when using rest-frame J band selection. The apparently more rapid evolution that we find in the visible is likely caused by biases relating to incompleteness and spatial resolution affecting the ground based near IR photometry, underestimating pair counts at higher redshifts in the near-IR. The major merger rate was \sim5.6 times higher at z1.2z\sim1.2 than at the current epoch. Overall 41%×\times(0.5\gyr/τ\tau) of all galaxies with MJ19.5M_J\leq-19.5 have undergone a major merger in the last \sim8 \gyr, where τ\tau is the merger timescale. Interestingly, we find no effect on the derived major merger rate due to the presence of the large scale structure at z=0.735z=0.735 in the CDFS.Comment: Accepted for Publication in ApJ. 9 Figure

    Ascent control studies of the 049 and ATP parallel burn solid rocket motor shuttle configurations

    Get PDF
    The control authority approach is discussed as a major problem of the parallel burn soil shuttle configuration due to the many resulting system impacts regardless of the approach. The major trade studies and their results, which led to the recommendation of an SRB TVC control authority approach are presented

    Molecular Weight Dependence of Polymersome Membrane Elasticity and Stability

    Full text link
    Vesicles prepared in water from a series of diblock copolymers and termed "polymersomes" are physically characterized. With increasing molecular weight Mˉn\bar{M}_n, the hydrophobic core thickness dd for the self-assembled bilayers of polyethyleneoxide - polybutadiene (PEO-PBD) increases up to 20 nmnm - considerably greater than any previously studied lipid system. The mechanical responses of these membranes, specifically, the area elastic modulus KaK_a and maximal areal strain αc\alpha_c are measured by micromanipulation. As expected for interface-dominated elasticity, KaK_a (\simeq 100 pN/nmpN/nm) is found to be independent of Mˉn\bar{M}_n. Related mean-field ideas also predict a limiting value for αc\alpha_c which is universal and about 10-fold above that typical of lipids. Experiments indeed show αc\alpha_c generally increases with Mˉn\bar{M}_n, coming close to the theoretical limit before stress relaxation is opposed by what might be chain entanglements at the highest Mˉn\bar{M}_n. The results highlight the interfacial limits of self-assemblies at the nano-scale.Comment: 16 pages, 5 figures, and 1 tabl

    Dynamic Simulations of Inflammatory Cell Recruitment: The State Diagram for Cell Adhesion Mediated by Two Receptors

    Get PDF
    White blood cell recruitment from the bloodstream to surrounding tissues is an essential component of the immune response. Capture Of hlood-borne Ieuk\u27Wks onto vascular endothelium proceeds via a two-step mechanism, with each step mediated by a distinct receptor-ligand pair. Cells first transiently adhere, or roll (via interactions between selectins and sialyl-Lewis-x), and then firmly adhere to the vascular wall (via interactions between integrins and ICAM-1). We have reported that a eomputatiokl method called Adhesive Dynamics (AD) accurately reproduces the fine scale dynamics of selectin-mediated rolling [1]. This paper extends the use of AD simulations to model the dynamics of cell adhesion when two classes of receptors are simultaneously active: one class (selectins) with weakly adhesive properties, and the other (integrins) with strongly adhesive properties. AD simulations predict synergistic functions of the two receptors in mediating adhesion. We present this relationship in a two-receptor state diagram, a map that relates the densities and properties of adhesion molecules to various adhesive behaviors that they code, such as rolling or firm adhesion. The predictions of two-receptor adhesive dynamics are validated by the ability of the model to reproduce experimental neutrophil rolling velocities

    The Shear Threshold Effect for Particle Adhesion to Bioreactive Surfaces: Influence of Receptor and Ligand Site Density

    Get PDF
    Selectins are cell adhesion molecules that mediate capture and rolling adhesion of white blood cells to vascular walls, an essential component of the inflammatory response. Adhesion through L-selectin requires a hydrodynamic shear stress above a threshold level, a phenomenon known as the shear threshold effect. We have reported that the shear threshold effect can he re-created in cell-free systems, in which microspheres coated with the carbohydrate ligand sialyl Lewis x (sLex) are perfused over L-selectin-coated surfaces. This paper extends the use of the cell-free system to determine the concurrent influence of receptor and ligand site density on the shear threshold effect. We find that the shear threshold effect diminishes with increasing levels of either L-selectin or sLex. At reduced site densities of either L-selectin or sLex, the shear threshold effect is present, with maximal rolling observed at a shear stress of 1.2 dynes/cm2. At higher site densities of L-selectin and sLex, the shear threshold effect disappears. These results suggest that the shear threshold relies on the formation of low numbers of receptor-ligand bonds

    Potential Energy Surface for H_2 Dissociation over Pd(100)

    Full text link
    The potential energy surface (PES) of dissociative adsorption of H_2 on Pd(100) is investigated using density functional theory and the full-potential linear augmented plane wave (FP-LAPW) method. Several dissociation pathways are identified which have a vanishing energy barrier. A pronounced dependence of the potential energy on ``cartwheel'' rotations of the molecular axis is found. The calculated PES shows no indication of the presence of a precursor state in front of the surface. Both results indicate that steering effects determine the observed decrease of the sticking coefficient at low energies of the H_2 molecules. We show that the topology of the PES is related to the dependence of the covalent H(s)-Pd(d) interactions on the orientation of the H_2 molecule.Comment: RevTeX, 8 pages, 5 figures in uufiles forma

    Reinventing College Physics for Biologists: Explicating an epistemological curriculum

    Full text link
    The University of Maryland Physics Education Research Group (UMd-PERG) carried out a five-year research project to rethink, observe, and reform introductory algebra-based (college) physics. This class is one of the Maryland Physics Department's large service courses, serving primarily life-science majors. After consultation with biologists, we re-focused the class on helping the students learn to think scientifically -- to build coherence, think in terms of mechanism, and to follow the implications of assumptions. We designed the course to tap into students' productive conceptual and epistemological resources, based on a theoretical framework from research on learning. The reformed class retains its traditional structure in terms of time and instructional personnel, but we modified existing best-practices curricular materials, including Peer Instruction, Interactive Lecture Demonstrations, and Tutorials. We provided class-controlled spaces for student collaboration, which allowed us to observe and record students learning directly. We also scanned all written homework and examinations, and we administered pre-post conceptual and epistemological surveys. The reformed class enhanced the strong gains on pre-post conceptual tests produced by the best-practices materials while obtaining unprecedented pre-post gains on epistemological surveys instead of the traditional losses.Comment: 35 pages including a 15 page appendix of supplementary material

    Beyond deficit-based models of learners' cognition: Interpreting engineering students' difficulties with sense-making in terms of fine-grained epistemological and conceptual dynamics

    Full text link
    Researchers have argued against deficit-based explanations of students' troubles with mathematical sense-making, pointing instead to factors such as epistemology: students' beliefs about knowledge and learning can hinder them from activating and integrating productive knowledge they have. In this case study of an engineering major solving problems (about content from his introductory physics course) during a clinical interview, we show that "Jim" has all the mathematical and conceptual knowledge he would need to solve a hydrostatic pressure problem that we posed to him. But he reaches and sticks with an incorrect answer that violates common sense. We argue that his lack of mathematical sense-making-specifically, translating and reconciling between mathematical and everyday/common-sense reasoning-stems in part from his epistemological views, i.e., his views about the nature of knowledge and learning. He regards mathematical equations as much more trustworthy than everyday reasoning, and he does not view mathematical equations as expressing meaning that tractably connects to common sense. For these reasons, he does not view reconciling between common sense and mathematical formalism as either necessary or plausible to accomplish. We, however, avoid a potential "deficit trap"-substituting an epistemological deficit for a concepts/skills deficit-by incorporating multiple, context-dependent epistemological stances into Jim's cognitive dynamics. We argue that Jim's epistemological stance contains productive seeds that instructors could build upon to support Jim's mathematical sense-making: He does see common-sense as connected to formalism (though not always tractably so) and in some circumstances this connection is both salient and valued.Comment: Submitted to the Journal of Engineering Educatio
    corecore