research

Molecular Weight Dependence of Polymersome Membrane Elasticity and Stability

Abstract

Vesicles prepared in water from a series of diblock copolymers and termed "polymersomes" are physically characterized. With increasing molecular weight Mˉn\bar{M}_n, the hydrophobic core thickness dd for the self-assembled bilayers of polyethyleneoxide - polybutadiene (PEO-PBD) increases up to 20 nmnm - considerably greater than any previously studied lipid system. The mechanical responses of these membranes, specifically, the area elastic modulus KaK_a and maximal areal strain αc\alpha_c are measured by micromanipulation. As expected for interface-dominated elasticity, KaK_a (\simeq 100 pN/nmpN/nm) is found to be independent of Mˉn\bar{M}_n. Related mean-field ideas also predict a limiting value for αc\alpha_c which is universal and about 10-fold above that typical of lipids. Experiments indeed show αc\alpha_c generally increases with Mˉn\bar{M}_n, coming close to the theoretical limit before stress relaxation is opposed by what might be chain entanglements at the highest Mˉn\bar{M}_n. The results highlight the interfacial limits of self-assemblies at the nano-scale.Comment: 16 pages, 5 figures, and 1 tabl

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020