11,672 research outputs found

    Weakly nonparaxial effects on the propagation of (1+1)D spatial solitons in inhomogeneous Kerr media

    Get PDF
    The widely-used approach to study the beam propagation in Kerr media is based on the slowly varying envelope approximation (SVEA) which is also known as the paraxial approximation. Within this approximation, the beam evolution is described by the nonlinear Schrödinger (NLS) equation. In this paper, we extend the NLS equation by including higher-order terms to study the effects of nonparaxiality on the soliton propagation in inhomogeneous Kerr media. The result is still a one-way wave equation which means that all back-reflections are neglected. The accuracy of this approximation exceeds the standard SVEA. By performing several numerical simulations, we show that the NLS equation produces reasonably good predictions for relatively small degrees of nonparaxiality, as expected. However, in the regions where the envelope beam is changing rapidly as in the breakup of a multisoliton bound state, the nonparaxiality plays an important role

    Effect of Bilayer Thickness on Membrane Bending Rigidity

    Full text link
    The bending rigidity kck_c of bilayer vesicles self-assembled from amphiphilic diblock copolymers has been measured using single and dual-micropipet techniques. These copolymers are nearly a factor of 5 greater in hydrophobic membrane thickness dd than their lipid counterparts, and an order of magnitude larger in molecular weight Mˉn\bar{M}_n. The macromolecular structure of these amphiphiles lends insight into and extends relationships for traditional surfactant behavior. We find the scaling of kck_c with thickness to be nearly quadratic, in agreement with existing theories for bilayer membranes. The results here are key to understanding and designing soft interfaces such as biomembrane mimetics

    Helmholtz solver with transparent influx boundary conditions and nonuniform exterior

    Get PDF
    Boundary conditions for a 2D finite element Helmholtz solver are derived, which allow scattered light to leave the calculation domain in the presence of outgoing waveguides. Influx of light, through a waveguide or otherwise, can be prescribed at any boundary

    A combination of Dirichlet to Neumann operators and perfectly matched layers as boundary conditions for optical finite element simulations

    Get PDF
    By combining Dirichlet to Neumann (DtN) operators and Perfectly Matched Layers (PML’s) as boundary conditions on a rectangular domain on which the Helmholtz equation is solved, the disadvantages of both methods are greatly diminished. Due to the DtN operators, light may be accurately fluxed into the domain, while the PML’s absorb light that is reflected from the corners of the domain when only DtN boundaries are used

    Signatures of few-body resonances in finite volume

    Get PDF
    We study systems of bosons and fermions in finite periodic boxes and show how the existence and properties of few-body resonances can be extracted from studying the volume dependence of the calculated energy spectra. Using a plane-wave-based discrete variable representation to conveniently implement periodic boundary conditions, we establish that avoided level crossings occur in the spectra of up to four particles and can be linked to the existence of multi-body resonances. To benchmark our method we use two-body calculations, where resonance properties can be determined with other methods, as well as a three-boson model interaction known to generate a three-boson resonance state. Finding good agreement for these cases, we then predict three-body and four-body resonances for models using a shifted Gaussian potential. Our results establish few-body finite-volume calculations as a new tool to study few-body resonances. In particular, the approach can be used to study few-neutron systems, where such states have been conjectured to exist.Comment: 13 pages, 10 figures, 2 tables, published versio

    Is a Trineutron Resonance Lower in Energy than a Tetraneutron Resonance?

    Full text link
    We present quantum Monte Carlo calculations of few-neutron systems confined in external potentials based on local chiral interactions at next-to-next-to-leading order in chiral effective field theory. The energy and radial densities for these systems are calculated in different external Woods-Saxon potentials. We assume that their extrapolation to zero external-potential depth provides a quantitative estimate of three- and four-neutron resonances. The validity of this assumption is demonstrated by benchmarking with an exact diagonalization in the two-body case. We find that the extrapolated trineutron resonance, as well as the energy for shallow well depths, is lower than the tetraneutron resonance energy. This suggests that a three-neutron resonance exists below a four-neutron resonance in nature and is potentially measurable. To confirm that the relative ordering of three- and four-neutron resonances is not an artifact of the external confinement, we test that the odd-even staggering in the helium isotopic chain is reproduced within this approach. Finally, we discuss similarities between our results and ultracold Fermi gases.Comment: 6 pages, 5 figures, version compatible with published lette

    Molecular Weight Dependence of Polymersome Membrane Elasticity and Stability

    Full text link
    Vesicles prepared in water from a series of diblock copolymers and termed "polymersomes" are physically characterized. With increasing molecular weight Mˉn\bar{M}_n, the hydrophobic core thickness dd for the self-assembled bilayers of polyethyleneoxide - polybutadiene (PEO-PBD) increases up to 20 nmnm - considerably greater than any previously studied lipid system. The mechanical responses of these membranes, specifically, the area elastic modulus KaK_a and maximal areal strain αc\alpha_c are measured by micromanipulation. As expected for interface-dominated elasticity, KaK_a (≃\simeq 100 pN/nmpN/nm) is found to be independent of Mˉn\bar{M}_n. Related mean-field ideas also predict a limiting value for αc\alpha_c which is universal and about 10-fold above that typical of lipids. Experiments indeed show αc\alpha_c generally increases with Mˉn\bar{M}_n, coming close to the theoretical limit before stress relaxation is opposed by what might be chain entanglements at the highest Mˉn\bar{M}_n. The results highlight the interfacial limits of self-assemblies at the nano-scale.Comment: 16 pages, 5 figures, and 1 tabl

    Flight Gate Assignment with a Quantum Annealer

    Get PDF
    Optimal flight gate assignment is a highly relevant optimization problem from airport management. Among others, an important goal is the minimization of the total transit time of the passengers. The corresponding objective function is quadratic in the binary decision variables encoding the flight-to-gate assignment. Hence, it is a quadratic assignment problem being hard to solve in general. In this work we investigate the solvability of this problem with a D-Wave quantum annealer. These machines are optimizers for quadratic unconstrained optimization problems (QUBO). Therefore the flight gate assignment problem seems to be well suited for these machines. We use real world data from a mid-sized German airport as well as simulation based data to extract typical instances small enough to be amenable to the D-Wave machine. In order to mitigate precision problems, we employ bin packing on the passenger numbers to reduce the precision requirements of the extracted instances. We find that, for the instances we investigated, the bin packing has little effect on the solution quality. Hence, we were able to solve small problem instances extracted from real data with the D-Wave 2000Q quantum annealer.Comment: Updated figure
    • …
    corecore