78 research outputs found

    DIACEREIN-LOADED NIOSOMES (DC-NS): A NEW TECHNIQUE TO SUSTAIN THE RELEASE OF DRUG ACTION

    Get PDF
    Objective: The study's main goal is to develop a suitable niosomes (NS) encapsulated drug for anti-inflammatory effects such as diacerein (DC) and to evaluate the system's vesicle size (VS), entrapment efficiency (EE %), physical stability and in vitro release. Methods: Tween (40 and 60), cholesterol, and stearylamine were used in a 1:1:0.1 molar ratios as non-ionic surfactants. Thin film hydration was used to create the NS. Results: The higher EE% was observed with NS (F11) prepared from tween 60, cholesterol and 2.5 min sonication. These formulations' release patterns were Higuchi diffusion and first order. For the stability study, NS formulations were stored at temperature between 2-8 °C for 60 d retains the most drugs when compared to room and high temperature conditions. Conclusion: The findings of this study have conclusively shown that after NS encapsulation of DC, drug release is prolonged at a constant and controlled rate

    Evaluating the Use of Mixed Reality in CSI Training through the Integration of the Task-Technology Fit and Technology Acceptance Model

    Get PDF
    Despite the emerging literature on adopting Mixed Reality (MR) headsets in crime scene investigation (CSI) -, it is still debatable on how to employ these headsets and its application for training purposes in higher education and police academies. Hence, this research presents a novel hybrid theoretical framework that combines the Task-technology Fit (TTF) and Technology Acceptance Model (TAM) variables and the most prominent features of MR headsets—immersion, interactivity and mobility. The main objective is to explore young investigators’ behavioural intention to adopt MR headsets and their applications for investigation training practices. To validate the developed model, a questionnaire survey was the primary method used to collect data from 160 police academy students using the partial least squares-structural equation modelling (PLS-SEM) technique. The empirical results revealed that task technology fit has a positive impact on the perceived usefulness of MR headset applications and no significant positive impact on the perceived ease of use applications of MR devices. On the contrary, individual technology fit has a positive impact on the perceived ease of use and no significant positive effects were found regarding the perceived usefulness of investigation training purposes. Furthermore, the results indicated that the mobility of MR wearable devices positively influences the perceived ease of use and the perceived usefulness for crime scene practices. The study also addresses the theoretical contributions and practical implications of these outcomes

    Seamless Crime Scene Reconstruction in Mixed Reality for Investigation Training: A Design and Evaluation Study

    Get PDF
    Investigation training in the real crime scene is a critical component of forensic science education. However, bringing young investigators to real crime scenes is costly and faces significant challenges. Mixed Reality (MR) is one of the most evolving technologies that provide unlimited possibilities for practical activities in the education sector. This paper aims to propose and evaluate a novel design of an MR system using Microsoft HoloLens 2.0 and it is tailored to work in a spatial 3D scanned and reconstructed crime scene. The system was designed to be a costly-effective experience that helps young Kuwait police officers to enhance their investigation skills. The proposed system has been evaluated through system usability, user interaction and performance metrics quantitatively via 44 young police officers, and qualitatively using the Think-aloud protocols via a group of experts. Both groups showed positive levels of usability, user interaction and overall satisfaction with minimal negative feedback. Based on the positive feedback, the system will be taken into the commercialisation stage in the future. Despite the high cost of the MR device, it was stated by experts that the system is needed to be provided as an essential tool for crime scene education and investigation practices

    Cyanobacteria—From the Oceans to the Potential Biotechnological and Biomedical Applications

    Get PDF
    Cyanobacteria are photosynthetic prokaryotic organisms which represent a significantsource of novel, bioactive, secondary metabolites, and they are also considered an abundant source ofbioactive compounds/drugs, such as dolastatin, cryptophycin 1, curacin toyocamycin, phytoalexin,cyanovirin-N and phycocyanin. Some of these compounds have displayed promising results insuccessful Phase I, II, III and IV clinical trials. Additionally, the cyanobacterial compounds applied tomedical research have demonstrated an exciting future with great potential to be developed into newmedicines. Most of these compounds have exhibited strong pharmacological activities, includingneurotoxicity, cytotoxicity and antiviral activity against HCMV, HSV-1, HHV-6 and HIV-1, so thesemetabolites could be promising candidates for COVID-19 treatment. Therefore, the effective large-scale production of natural marine products through synthesis is important for resolving the existingissues associated with chemical isolation, including small yields, and may be necessary to betterinvestigate their biological activities. Herein, we highlight the total synthesized and stereochemicaldeterminations of the cyanobacterial bioactive compounds. Furthermore, this review primarilyfocuses on the biotechnological applications of cyanobacteria, including applications as cosmetics,food supplements, and the nanobiotechnological applications of cyanobacterial bioactive compoundsin potential medicinal applications for various human diseases are discussed.Stockholm UniversityPeer Reviewe

    Collaboration in virtual and augmented reality : a systematic overview

    Get PDF
    This paper offers a systematic overview of collaboration in virtual and augmented reality, including an assessment of advantages and challenges unique to collaborating in these mediums. In an attempt to highlight the current landscape of augmented and virtual reality collaboration (AR and VR, respectively), our selected research is biased towards more recent papers (within the last 5 years), but older work has also been included when particularly relevant. Our findings identify a number of potentially under-explored collaboration types, such as asynchronous collaboration and collaboration that combines AR and VR. We finally provide our key takeaways, including overall trends and opportunities for further research

    Comparison of CT and integrated PET-CT based radiation therapy planning in patients with malignant pleural mesothelioma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>When combined with adequate tumoricidal doses, accurate target volume delineation remains to be the one of the most important predictive factors for radiotherapy (RT) success in locally advanced or medically inoperable malignant pleural mesothelioma (MPM) patients. Recently, 18-fluorodeoxyglucose positron emission tomography (PET) has demonstrated significant improvements in diagnosis and accurate staging of MPM. However, role of additional PET data has not been studied in RT planning (RTP) of patients with inoperable MPM or in those who refuse surgery. Therefore, we planned to compare CT with co-registered PET-CT as the basis for delineating target volumes in these patients group.</p> <p>Methods</p> <p>Retrospectively, the CT and co-registered PET-CT data of 13 patients with histologically proven MPM were utilized to delineate target volumes separately. For each patient, target volumes (gross tumor volume [GTV], clinical target volume [CTV], and planning target volume [PTV]) were defined using the CT and PET-CT fusion data sets. The PTV was measured in two ways: PTV1 was CTV plus a 1-cm margin, and PTV2 was GTV plus a 1-cm margin. We analyzed differences in target volumes.</p> <p>Results</p> <p>In 12 of 13 patients, compared to CT-based delineation, PET-CT-based delineation resulted in a statistically significant decrease in the mean GTV, CTV, PTV1, and PTV2. In these 12 patients, mean GTV decreased by 47.1% ± 28.4%, mean CTV decreased by 38.7% ± 24.7%, mean PTV1 decreased by 31.1% ± 23.1%, and mean PTV2 decreased by 40.0% ± 24.0%. In 4 of 13 patients, hilar lymph nodes were identified by PET-CT that was not identified by CT alone, changing the nodal status of tumor staging in those patients.</p> <p>Conclusion</p> <p>This study demonstrated the usefulness of PET-CT-based target volume delineation in patients with MPM. Co-registration of PET and CT information reduces the likelihood of geographic misses, and additionally, significant reductions observed in target volumes may potentially allow escalation of RT dose beyond conventional limits potential clinical benefits in tumor control rates, which needs to be tested in future studies.</p

    A Novel Classification of Lung Cancer into Molecular Subtypes

    Get PDF
    The remarkably heterogeneous nature of lung cancer has become more apparent over the last decade. In general, advanced lung cancer is an aggressive malignancy with a poor prognosis. The discovery of multiple molecular mechanisms underlying the development, progression, and prognosis of lung cancer, however, has created new opportunities for targeted therapy and improved outcome. In this paper, we define “molecular subtypes” of lung cancer based on specific actionable genetic aberrations. Each subtype is associated with molecular tests that define the subtype and drugs that may potentially treat it. We hope this paper will be a useful guide to clinicians and researchers alike by assisting in therapy decision making and acting as a platform for further study. In this new era of cancer treatment, the ‘one-size-fits-all’ paradigm is being forcibly pushed aside—allowing for more effective, personalized oncologic care to emerge
    corecore