34,131 research outputs found
Metamaterials for light rays: ray optics without wave-optical analog in the ray-optics limit
Volumes of sub-wavelength electromagnetic elements can act like homogeneous
materials: metamaterials. In analogy, sheets of optical elements such as prisms
can act ray-optically like homogeneous sheet materials. In this sense, such
sheets can be considered to be metamaterials for light rays (METATOYs).
METATOYs realize new and unusual transformations of the directions of
transmitted light rays. We study here, in the ray-optics and scalar-wave
limits, the wave-optical analog of such transformations, and we show that such
an analog does not always exist. Perhaps, this is the reason why many of the
ray-optical possibilities offered by METATOYs have never before been
considered.Comment: 10 pages, 3 figures, references update
Electric field induced charge noise in doped silicon: ionization of phosphorus donors
We report low frequency charge noise measurement on silicon substrates with
different phosphorus doping densities. The measurements are performed with
aluminum single electron transistors (SETs) at millikelvin temperatures where
the substrates are in the insulating regime. By measuring the SET Coulomb
oscillations, we find a gate voltage dependent charge noise on the more heavily
doped substrate. This charge noise, which is seen to have a 1/f spectrum, is
attributed to the electric field induced tunneling of electrons from their
phosphorus donor potentials.Comment: 4 page, 3 figure
Local light-ray rotation
We present a sheet structure that rotates the local ray direction through an
arbitrary angle around the sheet normal. The sheet structure consists of two
parallel Dove-prism sheets, each of which flips one component of the local
direction of transmitted light rays. Together, the two sheets rotate
transmitted light rays around the sheet normal. We show that the direction
under which a point light source is seen is given by a Mobius transform. We
illustrate some of the properties with movies calculated by ray-tracing
software.Comment: 9 pages, 6 figure
Search for L5 Earth Trojans with DECam
Most of the major planets in the Solar system support populations of co-orbiting bodies, known as Trojans, at their L4 and L5 Lagrange points. In contrast, Earth has only one known co-orbiting companion. This paper presents the results from a search for Earth Trojans (ETs) using the DECam instrument on the Blanco Telescope at CTIO. This search found no additional Trojans in spite of greater coverage compared to previous surveys of the L5 point. Therefore, the main result of this work is to place the most stringent constraints to date on the population of ETs. These constraints depend on assumptions regarding the underlying population properties, especially the slope of the magnitude distribution (which in turn depends on the size and albedo distributions of the objects). For standard assumptions, we calculate upper limits to a 90 per cent confidence limit on the L5 population of N_(ET) < 1 for magnitude H < 15.5, N_(ET) = 60–85 for H < 19.7, and N_(ET) = 97 for H = 20.4. This latter magnitude limit corresponds to Trojans ∼300 m in size for albedo 0.15. At H = 19.7, these upper limits are consistent with previous L4 ET constraints and significantly improve L5 constraints
An obstruction based approach to the Kochen-Specker theorem
In [1] it was shown that the Kochen Specker theorem can be written in terms
of the non-existence of global elements of a certain varying set over the
partially ordered set of boolean subalgebras of projection operators on some
Hilbert space. In this paper, we show how obstructions to the construction of
such global elements arise, and how this provides a new way of looking at
proofs of the theorem.Comment: 14 pages, 6 figure
Noise data for a twin-engine commercial jet aircraft flying conventional, steep, and two-segment approaches
Center-line noise measurements of a twin-engine commercial jet aircraft were made during steep landing approach profiles, and during two-segment approach profiles for comparison with similar measurements made during conventional approaches. The steep and two-segment approaches showed significant noise reductions when compared with the -3 deg base line. The measured noise data were also used to develop a method for estimating the noise under the test aircraft at thrust and altitude conditions typical of current landing procedures and of landing procedures under development for the Advanced Air Traffic Control System
Mass inflation in a D dimensional Reissner-Nordstrom black hole: a hierarchy of particle accelerators ?
We study the geometry inside the event horizon of perturbed D dimensional
Reissner-Nordstrom-(A)dS type black holes showing that, similarly to the four
dimensional case, mass inflation also occurs for D>4. First, using the
homogeneous approximation, we show that an increase of the number of spatial
dimensions contributes to a steeper variation of the metric coefficients with
the areal radius and that the phenomenon is insensitive to the cosmological
constant in leading order. Then, using the code reported in arXiv:0904.2669
[gr-qc] adapted to D dimensions, we perform fully non-linear numerical
simulations. We perturb the black hole with a compact pulse adapting the pulse
amplitude such that the relative variation of the black hole mass is the same
in all dimensions, and determine how the black hole interior evolves under the
perturbation. We qualitatively confirm that the phenomenon is similar to four
dimensions as well as the behaviour observed in the homogeneous approximation.
We speculate about the formation of black holes inside black holes triggered by
mass inflation, and about possible consequences of this scenario.Comment: 8 pages, 6 figure
The effect of low-energy ion-implantation on the electrical transport properties of Si-SiO2 MOSFETs
Using silicon MOSFETs with thin (5nm) thermally grown SiO2 gate dielectrics,
we characterize the density of electrically active traps at low-temperature
after 16keV phosphorus ion-implantation through the oxide. We find that, after
rapid thermal annealing at 1000oC for 5 seconds, each implanted P ion
contributes an additional 0.08 plus/minus 0.03 electrically active traps,
whilst no increase in the number of traps is seen for comparable silicon
implants. This result shows that the additional traps are ionized P donors, and
not damage due to the implantation process. We also find, using the room
temperature threshold voltage shift, that the electrical activation of donors
at an implant density of 2x10^12 cm^-2 is ~100%.Comment: 11 pages, 10 figure
Sensitivity of a Bolometric Interferometer to the CMB power spectrum
Context. The search for B-mode polarization fluctuations in the Cosmic
Microwave Background is one of the main challenges of modern cosmology. The
expected level of the B-mode signal is very low and therefore requires the
development of highly sensitive instruments with low systematic errors. An
appealing possibility is bolometric interferometry. Aims. We compare in this
article the sensitivity on the CMB angular power spectrum achieved with direct
imaging, heterodyne and bolometric interferometry. Methods. Using a simple
power spectrum estimator, we calculate its variance leading to the counterpart
for bolometric interferometry of the well known Knox formula for direct
imaging. Results. We find that bolometric interferometry is less sensitive than
direct imaging. However, as expected, it is finally more sensitive than
heterodyne interferometry due to the low noise of the bolometers. It therefore
appears as an alternative to direct imagers with different and possibly lower
systematic errors, mainly due to the absence of an optical setup in front of
the horns.Comment: 5 pages, 3 figures. This last version matches the published version
(Astronomy and Astrophysics 491 3 (2008) 923-927). Sensitivity of Heterodyne
Interferometers modified by a factor of tw
A Topos Perspective on State-Vector Reduction
A preliminary investigation is made of possible applications in quantum
theory of the topos formed by the collection of all -sets, where is a
monoid. Earlier results on topos aspects of quantum theory can be rederived in
this way. However, the formalism also suggests a new way of constructing a
`neo-realist' interpretation of quantum theory in which the truth values of
propositions are determined by the actions of the monoid of strings of finite
projection operators. By these means, a novel topos perspective is gained on
the concept of state-vector reduction
- …