1,494 research outputs found
Bayesian chronological modeling of SunWatch, a fort ancient village in Dayton, Ohio
Radiocarbon results from houses, pits, and burials at the SunWatch site, Dayton, Ohio, are presented within an interpretative Bayesian statistical framework. The primary model incorporates dates from archaeological features in an unordered phase and uses charcoal outlier modeling (Bronk Ramsey 2009b) to account for issues of wood charcoal 14C dates predating their context. The results of the primary model estimate occupation lasted for 1â245 yr (95% probability), starting in cal AD 1175â1385 (95% probability) and ending in cal AD 1330â1470 (95% probability). An alternative model was created by placing the 14C dates into two unordered phases corresponding with horizontal stratigraphic relationships or distinct groups of artifacts thought to be temporally diagnostic. The results of the alternative model further suggest that there is some temporal separation between Group 1 and Group 2, which seems more likely in the event of a multicomponent occupation. Overall, the modeling results provide chronology estimates for SunWatch that are more accurate and precise than that provided in earlier studies. While it is difficult to determine with certainty if SunWatch had a single-component or multicomponent occupation, it is clear that SunWatchâs occupation lasted until the second half of the AD 1300s
Design, development and thermal analysis of reusable Li-ion battery module for future mobile and stationary applications
The performance, energy storage capacity, safety, and lifetime of lithium-ion battery cells of different chemistries are very sensitive to operating and environmental temperatures. The cells generate heat by current passing through their internal resistances, and chemical reactions can generate additional, sometimes uncontrollable, heat if the temperature within the cells reaches the trigger temperature. Therefore, a high-performance battery cooling system that maintains cells as close to the ideal temperature as possible is needed to enable the highest possible discharge current rates while still providing a sufficient safety margin. This paper presents a novel design, preliminary development, and results for an inexpensive reusable, liquid-cooled, modular, hexagonal battery module that may be suitable for some mobile and stationary applications that have high charge and or discharge rate requirements. The battery temperature rise was measured experimentally for a six parallel 18650 cylindrical cell demonstrator module over complete discharge cycles at discharge rates of 1C, 2C and 3C. The measured temperature rises at the hottest point in the cells, at the anode terminal, were found to be 6, 17 and 22 °C, respectively. The thermal resistance of the system was estimated to be below 0.2 K/W at a coolant flow rate of 0.001 Kg/s. The proposed liquid cooled module appeared to be an effective solution for maintaining cylindrical Li-ion cells close to their optimum working temperature
ECOLOGY OF THE IMAGE
We know very little about the ecology of our designed world. Contrary to all appearances, design is not about making objects. It is rather about structuring the conditions for life. Design is our second nature, naturalising changes in our ways of living. Yet it also conceals dangers and diminishes our sensitivity to respond to them. The security offered by the televisual image â and the solace of design's promise to remove all environmental risks â are fictions. Ecology of the Image is a critical exploration of idealism in design. Drawing on hermeneutic phenomenology, socio-cultural and design theory, it argues that design is not a value-free practice but structures epistemological attitudes into the world. Ideas are material elements of our environments. This thesis offers an explanation of how idealism circulates within the designed world, fashioning our minds, bodies and environments. The televisual is analysed as a normative phenomenon that inducts us into a way of seeing and understanding the world. Its vision of the affluent good life inspires and gives purpose to desire, and sustains what Manzini has called 'product based well being'. The thesis argues that the televisual puts us out of touch with the consequences of its vision; it diminishes our capacity for forethought. This results in the generation of unacknowledged, yet self-endangering environmental feedback. Environmental problems force us to take account of design's hidden rationales. Only at five minutes to midnight, for example, do we realise that the stock and supply of potable water is endangered. The problem is not so much this late recognition, but that design led us to believe in water's abundance. This situation demands the development of an ecological understanding of our designed worlds that can inform future actions. The sign, particularly as it has been mobilised in cultural theory, plays a leading role in this design situation and the perceptions it supports. The sign is utilised for its ability to denaturalise appearances â to 'read' design's claims on the world. Finally, the thesis turns to the designer-in-training in the process of acquiring instrumental skills and worldviews. It proposes a research strategy that inscribes environmental consciousness into the design process â situating the designer in the midst of semiotic and material worlds. Through its observational methodology it outlines ways of first understanding, then of intervening and generating changes in our 'ideal' world
Testing the Order of Fractional Integration of a Time Series in the Possible Presence of a Trend Break at an Unknown Point
We develop a test, based on the Lagrange multiplier [LM] testing principle, for the value of the long memory parameter of a univariate time series that is composed of a fractionally integrated shock around a potentially broken deterministic trend. Our proposed test is constructed from data which are de-trended allowing for a trend break whose (unknown) location is estimated by a standard residual sum of squares estimator. We demonstrate that the resulting LM-type statistic has a standard limiting null chi-squared distribution with one degree of freedom, and attains the same asymptotic local power function as an infeasible LM test based on the true shocks. Our proposed test therefore attains the same asymptotic local optimality properties as an oracle LM test in both the trend break and no trend break environments. Moreover, and unlike conventional unit root and stationarity tests, this asymptotic local power function does not alter between the break and no break cases and so there is no loss in asymptotic local power from allowing for a trend break at an unknown point in the sample, even in the case where no break is present. We also report the results from a Monte Carlo study into the finite-sample behaviour of our proposed test
Race and Ancestry in Immune Response to Breast Cancer
Martini and colleagues performed genetic ancestry estimation on a unique international triple-negative breast cancer (TNBC) study enriched for participants with African ancestry. They identified gene signatures indicative of ancestry in race-associated TNBC and found ancestry-associated immunologic differences that may contribute to racial disparities in breast cancer
Epithelial p53 Status Modifies Stromal-Epithelial Interactions During Basal-Like Breast Carcinogenesis
Basal-like breast cancers (BBC) exhibit subtype-specific phenotypic and transcriptional responses to stroma, but little research has addressed how stromal-epithelial interactions evolve during early BBC carcinogenesis. It is also unclear how common genetic defects, such as p53 mutations, modify these stromal-epithelial interactions. To address these knowledge gaps, we leveraged the MCF10 progression series of breast cell lines (MCF10A, MCF10AT1, and MCF10DCIS) to develop a longitudinal, tissue-contextualized model of p53-deficient, pre-malignant breast. Acinus asphericity, a morphogenetic correlate of cell invasive potential, was quantified with optical coherence tomography imaging, and gene expression microarrays were performed to identify transcriptional changes associated with p53 depletion and stromal context. Co-culture with stromal fibroblasts significantly increased the asphericity of acini derived from all three p53-deficient, but not p53-sufficient, cell lines, and was associated with the upregulation of 38 genes. When considered as a multigene score, these genes were upregulated in co-culture models of invasive BBC with increasing stromal content, as well as in basal-like relative to luminal breast cancers in two large human datasets. Taken together, stromal-epithelial interactions during early BBC carcinogenesis are dependent upon epithelial p53 status, and may play important roles in the acquisition of an invasive morphologic phenotype
DeCompress: Tissue compartment deconvolution of targeted mRNA expression panels using compressed sensing
Targeted mRNA expression panels, measuring up to 800 genes, are used in academic and clinical settings due to low cost and high sensitivity for archived samples. Most samples assayed on targeted panels originate from bulk tissue comprised of many cell types, and cell-type heterogeneity confounds biological signals. Reference-free methods are used when cell-type-specific expression references are unavailable, but limited feature spaces render implementation challenging in targeted panels. Here, we present DeCompress, a semi-reference-free deconvolution method for targeted panels. DeCompress leverages a reference RNA-seq or microarray dataset from similar tissue to expand the feature space of targeted panels using compressed sensing. Ensemble reference-free deconvolution is performed on this artificially expanded dataset to estimate cell-type proportions and gene signatures. In simulated mixtures, four public cell line mixtures, and a targeted panel (1199 samples; 406 genes) from the Carolina Breast Cancer Study, DeCompress recapitulates cell-type proportions with less error than reference-free methods and finds biologically relevant compartments. We integrate compartment estimates into cis-eQTL mapping in breast cancer, identifying a tumor-specific cis-eQTL for CCR3 (C-C Motif Chemokine Receptor 3) at a risk locus. DeCompress improves upon reference-free methods without requiring expression profiles from pure cell populations, with applications in genomic analyses and clinical settings
Tomonaga-Luttinger features in the resonant Raman spectra of quantum wires
The differential cross section for resonant Raman scattering from the
collective modes in a one dimensional system of interacting electrons is
calculated non-perturbatively using the bosonization method. The results
indicate that resonant Raman spectroscopy is a powerful tool for studying
Tomonaga-Luttinger liquid behaviour in quasi-one dimensional electron systems.Comment: 4 pages, no figur
Dirichlet sigma models and mean curvature flow
The mean curvature flow describes the parabolic deformation of embedded
branes in Riemannian geometry driven by their extrinsic mean curvature vector,
which is typically associated to surface tension forces. It is the gradient
flow of the area functional, and, as such, it is naturally identified with the
boundary renormalization group equation of Dirichlet sigma models away from
conformality, to lowest order in perturbation theory. D-branes appear as fixed
points of this flow having conformally invariant boundary conditions. Simple
running solutions include the paper-clip and the hair-pin (or grim-reaper)
models on the plane, as well as scaling solutions associated to rational (p, q)
closed curves and the decay of two intersecting lines. Stability analysis is
performed in several cases while searching for transitions among different
brane configurations. The combination of Ricci with the mean curvature flow is
examined in detail together with several explicit examples of deforming curves
on curved backgrounds. Some general aspects of the mean curvature flow in
higher dimensional ambient spaces are also discussed and obtain consistent
truncations to lower dimensional systems. Selected physical applications are
mentioned in the text, including tachyon condensation in open string theory and
the resistive diffusion of force-free fields in magneto-hydrodynamics.Comment: 77 pages, 21 figure
The ergogenic effect of beta-alanine combined with sodium bicarbonate on high-intensity swimming performance
We investigated the effect of beta-alanine (BA) alone (study A) and in combination with sodium bicarbonate (SB) (study B) on 100- and 200-m swimming performance. In study A, 16 swimmers were assigned to receive either BA (3.2 g·dayâ1 for 1 week and 6.4 g·dayâ1 for 4 weeks) or placebo (PL; dextrose). At baseline and after 5 weeks of supplementation, 100- and 200-m races were completed. In study B, 14 were assigned to receive either BA (3.2 g·dayâ1 for 1 week and 6.4 g·dayâ1 for 3 weeks) or PL. Time trials were performed once before and twice after supplementation (with PL and SB), in a crossover fashion, providing 4 conditions: PL-PL, PL-SB, BA-PL, and BA-SB. In study A, BA supplementation improved 100- and 200-m time-trial performance by 2.1% (p = 0.029) and 2.0% (p = 0.0008), respectively. In study B, 200-m time-trial performance improved in all conditions, compared with presupplementation, except the PL-PL condition (PL-SB, +2.3%; BA-PL, +1.5%; BA-SB, +2.13% (p < 0.05)). BA-SB was not different from BA-PL (p = 0.21), but the probability of a positive effect was 78.5%. In the 100-m time-trial, only a within-group effect for SB was observed in the PL-SB (p = 0.022) and BA-SB (p = 0.051) conditions. However, 6 of 7 athletes swam faster after BA supplementation. The probability of BA having a positive effect was 65.2%; when SB was added to BA, the probability was 71.8%. BA and SB supplementation improved 100- and 200-m swimming performance. The coingestion of BA and SB induced a further nonsignificant improvement in performance
- âŠ