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Abstract

We develop a test, based on the Lagrange multiplier [LM] testing principle, for the value of the

long memory parameter of a univariate time series that is composed of a fractionally integrated

shock around a potentially broken deterministic trend. Our proposed test is constructed from

data which are de-trended allowing for a trend break whose (unknown) location is estimated by a

standard residual sum of squares estimator. We demonstrate that the resulting LM-type statistic

has a standard limiting null chi-squared distribution with one degree of freedom, and attains the

same asymptotic local power function as an infeasible LM test based on the true shocks. Our

proposed test therefore attains the same asymptotic local optimality properties as an oracle LM

test in both the trend break and no trend break environments. Moreover, and unlike conventional

unit root and stationarity tests, this asymptotic local power function does not alter between the

break and no break cases and so there is no loss in asymptotic local power from allowing for a trend

break at an unknown point in the sample, even in the case where no break is present. We also

report the results from a Monte Carlo study into the finite-sample behaviour of our proposed test.

Keywords: Fractional integration; trend break; Lagrange multiplier test; asymptotically locally

most powerful test.

JEL classification: C22.

1 Introduction

In this paper we consider the problem of testing for the order of integration, d say, of a fractionally

integrated time series process that may be stationary or non-stationary around a deterministic trend

function. Our point of departure from the extant literature is to allow for the possibility that the
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Kingdom under research grant ES/M01147X/1. Correspondence to: Robert Taylor, Essex Business School, University
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trend function is broken and, moreover, that the change in trend, should it occur, takes place at

an unknown point in time. We follow the approach of Robinson (1994), Tanaka (1999) and Nielsen

(2004) who construct Lagrange Multiplier [LM] test statistics in the frequency domain and time

domain, respectively. These statistics are computationally convenient in that they avoid having to

estimate the order of integration under the alternative.

For the case where the form of the deterministic kernel is known (which in the current context we

interpret to mean that any putative break point in the deterministic trend function is taken as known,

and that it is known whether a trend break is present or not), Robinson (1994), Tanaka (1999) and

Nielsen (2004) show that residual-based variants of these LM tests are asymptotically locally most

powerful against a class of (local) alternatives under Gaussianity and have asymptotic critical values

given by the chi-squared distribution with one degree of freedom [χ2
1], regardless of the value of the

long memory parameter being tested. This class of tests therefore has significant advantages over

procedures that consider either the integer null of d = 1 against the integer alternative d = 0, the

so-called unit root tests such as that of Dickey and Fuller (1979), or the null of d = 0 against the

alternative d = 1, the so-called stationarity tests such as that of Kwiatkowski, Phillips, Schmidt and

Shin (1992). In particular, the limiting null distributions of these unit root and stationarity statistics

are non-standard and depend on the functional form of the fitted deterministic, differing between the

no trend break and trend break cases, and dependent on the location of the trend break. Moreover,

where a trend break is fitted but not actually present in the data, these tests show a considerable

decline in asymptotic local power relative to the case where a break is not fitted.

In practice, both the location of a putative break point and, indeed, whether or not a trend

break has even occurred will typically be unknown to the investigator. As a result, we therefore

consider a residual-based LM-type test which allows for the possibility that a deterministic trend break

occurs at an unknown point in the sample. The timing of the (putative) trend break is estimated by

applying a conventional minimum residual sum of squares [RSS] criterion across all candidate break

points. Focussing our attention on the time domain approach of Tanaka (1999) and Nielsen (2004),

we establish that, regardless of whether a trend break actually occurs or not, our proposed LM-type

test inherits all of the desirable properties of the original LM test in the known deterministic case;

that is, asymptotic local optimality together with asymptotic critical values from the χ2
1 distribution.

We demonstrate that this holds because where a trend break occurs, the location of the break is

estimated at a sufficiently fast rate that it may be treated as known in large samples and, hence,

reduces in the limit to the known deterministics case. Where a break does not occur, yet we fit a

redundant trend break to the data, we show that this does not impact upon the asymptotic distribution

of the statistic either under the null or under local alternatives. Although we consider the possibility

of a single level break here, we conjecture that our asymptotic results will also pertain for the case of

multiple possible trend breaks occurring at unknown points in the data. Compared to unit root or

stationarity tests, that would also now be based on a corresponding estimated trend break points, the

advantages of our approach become further emphasised. The asymptotics underlying the unit root and

stationarity tests are critically dependent on whether breaks occurs or not; see, for example, Perron
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and Rodŕıguez (2003) in the context of unit root testing, and Busetti and Harvey (2001,2003) in the

context of stationarity testing. Crucially, in addition to the power losses noted above, the limiting

null distributions of these tests in the cases where breaks are fitted differ according to the number of

breaks fitted, the number of breaks actually present and the locations of those, making correctly sized

inference rather problematic.

The remainder of the paper is organised as follows. Section 2 sets out the fractionally integrated

trend break model within which we work. Our proposed LM-type statistic for the case of an unknown

trend break is described in section 3, where we also establish its large sample properties via comparison

to an infeasible LM statistic based on the true errors rather than regression residuals. In section 4 we

present an evaluation of the finite sample size and power properties of our LM-type test. Section 5

concludes. Proofs are contained in a mathematical appendix.

In what follows we use the following notation: ‘x := y’ to indicate that x is defined by y ; ‘∼’ to

denote that the ratio of the quantity on the left hand side to that on the right hand side of the symbol

tends to 1 as the sample size tends to infinity; the operator ‘b.c’ is used to denote the integer part

of its argument; I (.) denotes the indicator function; L is used to denote the standard lag operator.

Finally, we use
d→ and

p→ and to denote convergence in distribution and in probability, respectively,

in each case as the sample size diverges.

2 The Fractionally Integrated Trend Break Model

We consider the following model for the scalar random variable xt,

xt = β1 + β2t+ β3DTt (τ∗) + et, t = 1, ..., T. (2.1)

The shock, et, is a zero mean, fractionally integrated process of order d, denoted et ∈ I (d), and we

will assume that d ∈ (−0.5, 0.5) ∪ (0.5, 1.5). Both stationary, non-stationary, and fractionally over-

differenced time series are therefore permitted within our set-up. Precise conditions on the shocks will

be given below. In (2.1), the deterministic trend break term, DTt (τ∗), is defined for a generic τ as

DTt (τ) := (t− bτT c) I (t ≥ bτT c). Where a trend break occurs, i.e. where β3 6= 0, we assume that

the true trend break fraction is such that τ∗ ∈ [τL, τU ] =: Λ ⊂ [0, 1], where the quantities τL and τU

are trimming parameters below and above which, respectively, a trend break is deemed not to occur.

Writing d =: d0 + θ, our interest in this paper focuses on testing the null hypothesis H0 : θ = 0 in

(2.1); that is, et ∈ I (d0) under H0. As in Robinson (1994) and Tanaka (1999), we will focus attention

on local alternatives whereby Hc : θ := θT = c/
√
T , with c a constant. Notice that Hc reduces to

H0 when c = 0. More generally, c is the Pitman drift for this testing problem and, as we will later

demonstrate, will determine the asymptotic local power of the test. Unless otherwise stated, all of the

large sample results provided in this paper are based on the assumption that Hc holds on (2.1) for

some value of the constant c.

Our model is completed by formalising the properties of et. For t > 0, et is taken to follow the
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fractionally integrated process

et :=

t∑
s=1

∆
(d)
t−sηs (2.2)

where, for any d ∈ (−0.5, 0.5) ∪ (0.5, 1.5), ∆
(d)
t := Γ (t+ d) /(Γ (d) Γ (t+ 1)), with Γ (·) denoting the

Gamma function, with the convention that Γ (0) :=∞ and Γ (0) /Γ (0) := 1. In view of the expansion

(1− L)−d =
∑∞

t=0 ∆
(d)
t Lt, the definition in (2.2) can also be written as et = ∆−d{ηtI(t > 0)}. To

simplify notation, and following Johansen and Nielsen (2010), we also introduce the operator ∆α
+ so

that, for a generic α and a generic series ξt, ∆α
+ξt := ∆α{ξtI(t > 0)}, and therefore et = ∆−d+ ηt. The

model for et is completed by assuming et = 0 when t ≤ 0. In common with the earlier contributions

to this literature in Robinson (1994), Tanaka (1999) and Nielsen (2004), we therefore assume that et

is a so-called “type II” fractionally integrated process.

Finally, ηt in (2.2) is assumed to be a zero mean, stationary process with spectral density that is ab-

solutely continuous and strictly positive at all frequencies with long run variance σ2
∞ :=

∑∞
h=−∞E

(
ηtηt+h

)
.

More precisely, we make the following assumption regarding ηt.

Assumption 1 Let {ηt} be generated by the finite-order ARMA(p,q) process, a(L)ηt = b(L)εt, sat-

isfying the following conditions: (a) the polynomials a(z) := 1 − a1z − · · · − apz
p and b(z) :=

1 − b1z − · · · − bqzq contain no common factors and are such that a(z) 6= 0 and b(z) 6= 0 for |z| ≤ 1,

and the innovation process εt is such that εt ∼ i.i.d.
(
0, σ2

ε

)
with 0 < σ2

ε < ∞; and (b) the following

higher-order moment conditions hold on εt, E |εt|q <∞ for q > max (2, 2/ (1 + 2d)) if d ∈ (−0.5, 0.5),

q > max (2, 2/ (2d− 1)) if d ∈ (0.5, 1.5).

Remark 1. The requirement in part (a) of Assumption 1 that ηt follows a stationary and invertible

finite-ordered ARMA process with no common factors is fairly standard in this literature; see, for

example, Tanaka (1999) or Nielsen (2004). The higher-order moment conditions placed on εt in

part (b) of Assumption 1 would not be required in cases where the true trend break date, τ∗, was

known. However, where τ∗ is unknown and must be estimated from the data then, as we shall see

below, a functional central limit theorem result will be needed on the estimates of the βj , j = 1, 2, 3,

parameters charaterising the deterministic component. As Johansen and Nielsen (2012) show, this

requires moment conditions like those given in part (b) of Assumption 1 to hold on εt.

3 Lagrange Multiplier Tests

As background motivation in section 3.1, we first briefly review the construction of the LM test for H0

in cases where et in (2.1) is observable; that is, where the true values of βi, i = 1, 2, 3, are all known

and, where the true value of β3 is non-zero, the trend break location τ∗ is also known. In section 3.2

we then discuss how the LM testing principle can be generalised to the case where the true values of

these parameters are not known and, hence, the test statistic needs to be based on regression residuals.
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3.1 An Infeasible LM Test

Where et is observable, the LM statistic for testing H0, under the assumption that ηt is Gaussian,

obtains directly from Nielsen (2004), inter alia. Defining g (z;ψ) := a (z) b−1 (z), we can estimate the

parameter vector ψ∗ := (a1, ..., ap, b1..., bq)
′ under H0 as

ψ̂ := arg min
ψ∈Θ

T∑
t=1

(
g (L;ψ) ∆d0

+ et

)2
. (3.1)

Throughout the paper the regularity condition that Θ is a Rp+q compact space of parameters for an

ARMA(p, q) model, such that the ARMA processes corresponding to parameters in Θ are stationary

and invertible with no common factors, will be taken to hold. Then, based on the estimate ψ̂, we

construct the quantities

ε̂t := g
(
L; ψ̂

)
∆d0

+ et, ŝ
2 := T−1

T∑
t=1

ε̂2
t , r̂j := ŝ−2T−1

T−j∑
t=1

ε̂tε̂t+j , Â :=
T−1∑
j=1

j−1r̂j . (3.2)

Defining gj as the coefficient on zj in the expansion of ∂ ln g (z;ψ) /∂ψ|ψ=ψ∗ , and setting

κ :=

∞∑
j=1

gjj
−1, Φ :=

∞∑
j=0

gjg
′
j , ω2 := π2/6− κ′Φ−1κ

then, as demonstrated in Theorem 3.3 of Tanaka (1999), under Hc and the conditions given in part

(a) of Assumption 1 we have that T 1/2Â
d→ N

(
cω2, ω2

)
. As discussed in Nielsen (2004, p.132), a

consistent estimator of ω2 is obtained on substituting the estimates from ψ̂ into the expressions for

κ and Φ above; we denote this estimator by ω̂2. The resulting LM statistic is then given by

LM := T
Â2

ω̂2 . (3.3)

Under the conditions of part (a) of Assumption 1 and the local alternative Hc,

LM
d→ χ2

1

(
c2ω2

)
(3.4)

where χ2
1

(
c2ω2

)
indicates a χ2

1 distribution with non-centrality parameter c2ω2; see, inter alia, Theo-

rem 4.2 of Nielsen (2004, p.132).

Remark 2. A one-sided test could also be considered, using the one-sided score statistic S :=(
T
ω̂2

)1/2
Â, as in Robinson (1994, pp. 1424,1426). This would allow testing, for example, the unit root

unit root null hypothesis, d0 = 1, against the alternative d0 < 1. Such tests will be more powerful

than the two-sided LM test based on LM , against one-sided alternatives (in the correct tail). Indeed,

under Gaussianity, the one-sided score test is asymptotically uniformly most powerful (UMP). Under

H0, S
d→ N(0, 1).

Remark 3. As discussed in Nielsen (2004, p.126) the foregoing LM test for the null hypothesis H0, is

asymptotically equivalent under Hc to the corresponding Wald and Likelihood Ratio tests for testing

H0. Moreover, as discussed in Robinson (1994) and Nielsen (2004), these tests are (locally) optimal in
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the sense that under Gaussianity they achieve a limiting non-central χ2
1 distribution with the maximal

available non-centrality parameter and are therefore locally most powerful. However, it should be

stressed that Gaussianity is not required as part of the conditions stated in part (a) of Assumption 1

to establish the large sample convergence result in (3.4).

3.2 Feasible LM-type Tests Based on Regression Residuals

We now consider the case of practical relevance where et is unobserved and so the LM statistic must

be constructed from regression residuals, rather than from et. We will show that a feasible statistic

can still be designed, and that it is asymptotically equivalent to the infeasible LM statistic in (3.3).

Where the true (potential) trend break location, τ∗, in (2.1) is known, then so the form of the

deterministic component is known to the practitioner, up to the unknown parameters βj , j = 1, 2, 3,

and, hence, lies within the non-stochastic regressors set-up considered by Robinson (1994) and Nielsen

(2004). These authors show how to construct a feasible LM statistic for H0 in this case which attains

a χ2
1

(
c2ω2

)
limiting distribution under Hc provided the conditions of part (a) of Assumption 1 hold,

with this result holding regardless of the true values of βj , j = 1, 2, 3, so that, in particular, the same

limiting results holds in both the trend break and no trend break environments. Our focus in this paper

is, however, the more realistic setting where τ∗ is unknown to the practitioner. In place of τ∗ we will

therefore need to build our test statistic around a suitable estimate of τ∗. An immediate implication

of doing so, however, is that the assumption of non-stochastic regressors required by Robinson (1994)

and Nielsen (2004) is no longer met. Indeed, accounting for this difference is the primary purpose of

this paper.

An obvious estimator of τ∗ to use is the minimum RSS estimator, τ̂ say, which minimises the

RSS over the sequence of levels regressions of xt on (1, t,DTt (τ))′, taken across all τ ∈ Λ. Where

a trend break occurs, so that the true value of β3 is non-zero, at time τ∗, then the properties of τ̂

depend on the order of integration of et. In particular, Chang and Perron (2016) show that when

et ∈ I (d), d ∈ (−0.5, 0.5)∪ (0.5, 1.5) then τ̂ −τ∗ = Op
(
T−3/2+d

)
. However, for the equivalent problem

of searching for a level break in the first differences of the data, we obtain from Lavielle and Moulines

(2000) that when d ∈ (0.5, 1.5) and τ̂ is now defined as the estimator which minimises the RSS over the

sequence of regressions in first differences of ∆xt on (1, DUt (τ))′, where DUt (τ) := I (t ≥ bτT c), then

τ̂−τ∗ = Op
(
T−1

)
. A faster rate of consistency can therefore be obtained by using the first differences-

based RSS estimator when d > 1/2. In view of these rates of consistency, we will undertake the

estimation of τ∗, and the consequent estimation of β1, β2 and β3 and, hence, et, using two different

regression models, whose form depends on the value of d0 specified under the null hypothesis, as

follows:

Model A: For d0 ∈ (−0.5, 0.5), we let yt := xt and use the levels form representation of (2.1):

yt = β1 + β2t+ β3DTt (τ∗) + ut, t = 1, ..., T, ut ∈ I (d)

where ut := et and, under H0, d = d0.
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Model B: For d0 ∈ (0.5, 1.5), we let yt := ∆xt and use the first-differenced transformation of (2.1):

yt = β2 + β3DUt (τ∗) + ut, t = 2, ..., T, ut ∈ I (d− 1)

where ut := ∆et, and, under H0, d = d0.

Remark 4. Taken together, Models A and B allow us to consider inference on the long memory

parameter in (2.1) in the presence of a possibly broken trend for hypothesised values of the long

memory parameter in the range d0 ∈ (−0.5, 0.5) ∪ (0.5, 1.5). It is worth noting that we will not

explicitly consider tests for null hypotheses which impose d0 > 1.5 in (2.1). Here the resulting test

statistics would be identical to the statistics of the form given in section 3.1 on substituting ∆d0
+ et

for ∆d0
+ xt; this is the case because taking the (d0 − 1)th differences of the de-trended residuals ût (τ),

defined for Model B in (3.6) below, will annihilate the estimated trend component when d0 > 1.5.

However, for d0 > 1.5 the trend component will have no impact on the large sample behaviour of these

statistics and they will therefore have the same large sample behaviour as given for LM in (3.4).

Remark 5. It is also worth commenting that although Robinson (1994) and Nielsen (2004) do not

restrict d0 to lie in a particular interval, they instead assume that sufficient rate conditions hold

on the estimates of the parameters characterising the determinisitic trend function; see Robinson

(1994,p.1434) and Equation (12) of Nielsen (2004). In these papers, the fractional differences of

the disturbances from (2.1) taken under the null hypothesis, that is ∆d0
+ et, are estimated using the

residuals from the regression of ∆d0
+ xt onto the ∆d0

+ differences of the deterministic kernel. Replacing

∆d0
+ et by these residuals in (3.2), yields an estimate of ε̂t and, proceeding as in (3.2) and (3.3), it

is then possible to compute a feasible version of the LM statistic based on these residuals. Under

the regularity conditions detailed in Robinson (1994) or Nielsen (2004), doing so yields a feasible LM

statistic that has the same limiting distribution as the infeasible LM statistic. Establishing such

regularity conditions is straightforward in many cases, such as where the deterministic component is

a polynomial trend, but is considerably more complicated in the case considered in this paper where

we allow for the possibility that a trend break occurs at an unknown point in the sample. Here we

need to establish the uniform (in τ) rate result for the estimated coefficients of the deterministic trend

function given in (3.11) of Lemma 1 in the case where no trend break occurs, and the corresponding

rate result in (3.14) of Lemma 1 for where a break does occur. Moreover, where a trend break occurs,

we also need to ensure that the estimate of τ∗ is consistent at a sufficiently fast rate, as is done in

(3.12) and (3.13) of Lemma 1 below. Establishing the results stated in Lemma 1 requires a functional

central limit theorem to hold, which in turn requires that d > −0.5. We note that the restriction that

d > −0.5 is also imposed in Chang and Perron (2016) when establishing properties for the estimates

of τ∗ and of β1, β2 and β3 which they consider.

In each of Model A and B we will also need to consider two scenarios, depending on whether the

trend break is in fact present or not; that is, whether β3 = 0 or β3 6= 0. To that end, and in order to

discuss Models A and B simultaneously, we now introduce some common notation, noting that in the
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case of Model B, β1 is not estimated. This notation is indexed by a generic value of τ ∈ Λ. In the

context of Model A we define zt (τ) := (1, t,DTt (τ))′ and β := (β1, β2, β3)′, whereas in the context of

Model B we define zt (τ) := (1, DUt (τ))′ and β := (β2, β3)′. Finally, we define the OLS estimate of β

(under Model A or Model B, as appropriate) as

β̂ (τ) :=
(∑T

t=j zt (τ) zt (τ)′
)−1 (∑T

t=j zt (τ) yt

)
(3.5)

where j = 1 in the case of Model A, and j = 2 for Model B. We then define the corresponding

de-trended residuals as

ût (τ) := yt − zt (τ)′ β̂ (τ) (3.6)

for t = 1, ..., T in the case of Model A, and for t = 2, ..., T in the case of Model B. For Model B, we

set û1 (τ) := 0, so that ût (τ) is defined for t = 1, ..., T in both cases.

Under H0, we can estimate ηt by taking the corresponding fractional differences of these OLS

de-trended residuals, as ∆δ0
+ ût (τ), for δ0 := d0 when Model A is used, and for δ0 := d0 − 1 when

Model B is used, for a specific value of τ . Proceeding as in the infeasible case, for any τ we can then

estimate ψ̂ (τ) via

ψ̂ (τ) := arg min
ψ∈Θ

T∑
t=1

(
g (L;ψ) ∆δ0

+ ût (τ)
)2

(3.7)

and use this to compute the quantities

ε̂t (τ) := g
(
L; ψ̂ (τ)

)
∆δ0

+ ût (τ) (3.8)

and

ŝ (τ)2 := T−1
T∑
t=1

ε̂2
t (τ) , r̂j (τ) := ŝ (τ)−2 1

T

T−j∑
t=1

ε̂t (τ) ε̂t+j (τ) , Â (τ) :=
T−1∑
j=1

j−1r̂j (τ) .

Given ψ̂ (τ), we also compute ω̂2 (τ) yielding the LM-type statistic

LM (τ) := T
Â2 (τ)

ω̂2 (τ)
. (3.9)

If the true break fraction, τ∗, was known then one would simply evaluate LM (τ) of (3.9) at τ = τ∗;

the resulting statistic, LM(τ∗), would for either d0 = 0 or d0 = 1 coincide with the statistic from

Robinson (1994), discussed at the start of this subsection. Our focus, however, is on the case where τ∗

is unknown and, following the earlier discussion, our proposed test will be based on evaluating LM (τ)

at τ̂ , the minimum RSS estimate

τ̂ := arg min
τ∈Λ

∑T
t=1 (ût (τ))2 (3.10)

whose form is determined according to the value of d0 being tested under the null hypothesis, H0.

Specifically, if d0 lies in the region (−0.5, 0.5) then we estimate τ∗ using the levels of the data and

test the null hypothesis that the long memory parameter in the levels data is d0, whereas if d0 lies
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in the range (0.5, 1.5) we instead estimate τ∗ using the first differences of the data and test the null

hypothesis that the long memory parameter in the first differenced data is d0 − 1.

In Theorem 1 below we will determine the large sample behaviour of LM (τ̂) by comparing it

to the infeasible LM statistic, LM of (3.3). Inherent in doing so will be to analyse the distance

between ε̂t and ε̂t (τ̂), the latter given by ε̂t (τ) in (3.8) evaluated at τ = τ̂ , and establish how this

affects the distance between LM (τ̂) and LM . The behaviour of LM (τ̂) clearly depends on the large

sample properties of the estimates τ̂ of (3.10) and β̂ (τ̂), the latter given by β̂ (τ) of (3.5) evaluated

at τ = τ̂ . Consequently, in Lemma 1 we first establish these results under Hc both for the case where

a trend break occurs (β3 6= 0) and where a trend break does not occur (β3 = 0). Theorem 1 will

then subsequently establish that these properties are sufficient to allow us to show that the difference,

LM (τ̂)− LM , is asymptotically negligible, regardless of whether or not a trend break occurs.

Lemma 1 Let xt be generated by (2.1) under Hc : θ := θT = c/
√
T , and let Assumption 1 hold. For

d0 ∈ (−0.5, 0.5), define, for generic α, the diagonal matrix KT (α) := diag
{
T 1/2−α, T 3/2−α, T 3/2−α},

whereas for d0 ∈ (0.5, 1.5), define the diagonal matrix KT (α) := diag
{
T 3/2−α, T 3/2−α}. Then the

following results hold:

(i) Where β3 6= 0, the estimates τ̂ of (3.10) and β̂ (τ̂), the latter given by (3.5) evaluated at τ = τ̂ ,

are such that

KT (d0)
(
β̂ (τ̂)− β

)
= Op (1) (3.11)

and

τ̂ − τ∗ = Op

(
T d0−3/2

)
if d0 ∈ (−0.5, 0.5) (3.12)

τ̂ − τ∗ = Op
(
T−1

)
if d0 ∈ (0.5, 1.5) (3.13)

(ii) Where β3 = 0, the estimate β̂ (τ) of (3.5) is such that, for d0 ∈ (−0.5, 0.5) ∪ (0.5, 1.5),

KT (d0)
(
β̂ (τ)− β

)
= Op (1) , (3.14)

uniformly in τ .

Remark 6. The result in part (ii) of Lemma 1 shows that when no break occurs, the (centred and

appropriately scaled) OLS estimator of β from (3.5) converges to a well-defined limiting distribution

and that this holds uniformly in τ . This uniform convergence then implies that it must also hold on

replacing τ with τ̂ , even though the latter is a random variable (even asymptotically); cf. Chang and

Perron (2016) and Lavielle and Moulines (2000).

Remark 7. The additional higher order moment conditions stipulated in part (b) of Assumption 1

are required for two reasons. Firstly, when β3 6= 0, estimation of τ∗ exploits a functional central limit

theorem; see Chang and Perron (2016). Secondly, in the case where β3 = 0, then a functional central

limit theorem is used to establish that the rate given in (3.14) holds uniformly in τ .
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In Theorem 1 we now state our main result, establishing the large sample behaviour of the LM-type

statistic LM (τ̂).

Theorem 1 Let the conditions of Lemma 1 hold. Then, for d0 ∈ (−0.5, 0.5) ∪ (0.5, 1.5):

(i) If β3 6= 0, then LM (τ̂)− LM = op (1).

(ii) If β3 = 0, then LM (τ)− LM = op (1), uniformly in τ .

Some remarks are in order.

Remark 8. An immediate consequence of Theorem 1 is that LM (τ̂) − LM = op(1) irrespective of

whether β3 6= 0 or β3 = 0. Consequently, regardless of the value of β3, LM (τ̂)
d→ χ2

1(c2ω2) under Hc,

thereby retaining asymptotic optimality. Moreover, since LM (τ̂)
d→ χ2

1 under H0, standard critical

values can still be used.

Remark 9. The result given in part (i) of Theorem 1 demonstrates that when β3 6= 0, such that

a trend break does occur, the difference between the LM-type statistics based on ε̂t and ε̂t (τ̂) is

asymptotically negligible. This arises because τ̂
p→ τ∗ at a sufficiently fast rate; cf. part (i) of Lemma

1. Part (ii) of Theorem 1 shows that when no break occurs, the difference between the LM-type

statistics based on ε̂t and ε̂t (τ) is asymptotically negligible, and that this holds uniformly in τ and,

hence, holds for τ̂ .

Remark 10. It is important to acknowledge that, in common with the results given in Lavielle and

Moulines (2000) and Chang and Perron (2016), Theorem 1 does not cover the case of d0 = 0.5. When

β3 6= 0, as noted in Remark 9, the proof of Theorem 1 is based on establishing that the difference

between the LM-type statistics based on ε̂t and ε̂t (τ̂) is asymptotically negligible. A key part of the

derivation of the theorem is proving that Â−Â (τ̂) = op(T
−1/2) and, as the difference ε̂t−ε̂t (τ̂) depends

on the term ∆d0
+ (DTt (τ̂)−DTt (τ∗)), on showing that

∑T
t=1(

∑t−1
j=1 j

−1∆d0
+ (DTt−j (τ̂)−DTt−j (τ∗)))ε̂t

= op
(
T−1/2

)
. The remainder term ∆d0

+ (DTt (τ̂)−DTt (τ∗)) is a random variable which is potentially

correlated with εt and, hence, with ε̂t. In order to allow for this correlation, we exploit the fact that

DTt (τ̂) − DTt (τ∗) follows a (broken) trend, and we use a method of proof based on summation by

parts. However, the bound that we can establish on Â− Â (τ̂) in this way is weaker the larger is d0,

until for d0 = 0.5 it is not sufficient to establish the required op(T
−1/2) bound; we refer the reader to

Lemma C2 and Lemma D2 in the proof for further details. We will nonetheless include d0 = 1/2 in

the Monte Carlo exercise in section 4. Here we find that the finite sample properties of LM (τ̂) for

d0 = 0.5 do not appear inconsistent with Theorem 1 also being valid for d0 = 0.5.

Remark 11. In parallel with the discussion in Remark 2 above, a one-sided test could also be

considered based on the score-type statistic S(τ̂) :=
(

T
ω̂2(τ̂)

)1/2
Â(τ̂). The large sample theory for

S(τ̂) follows from the results given in this paper; in particular, under H0, S(τ̂)
d→ N(0, 1).

Remark 12. The single trend break model (2.1) could be extended to allow for multiple trend breaks.

Specifically, we replace (2.1) with an (up to) m break model specification

xt = β1 + β2t+ β′3DTt(τ
∗) + et

10



where, DTt(τ
∗) := [DTt (τ∗1) , ..., DTt (τ∗m)]′. Here τ ∗ := [τ∗1, ..., τ

∗
m]′ is the vector of (unknown)

putative trend break fractions, β3 := [β3,1, ..., β3,m]′ the associated break magnitude parameters such

that a trend break occurs at time bτ∗iT c when β3,i 6= 0, i = 1, ...,m. The break fractions are assumed to

be such that τ∗i ∈ Λ for all i = 1, ...,m. A standard assumption in such a model is that |τ∗i−τ∗j | ≥ η > 0,

for all i, j, i 6= j, such that the DGP admits (up to) m level breaks occurring at unknown points across

the interval Λ, with a sample fraction of at least bηT c observations between breaks (note that m and

η must satisfy the relation m ≤ 1 + b(τU − τL)/ηc). Provided that m breaks are estimated using the

obvious m-dimensional analogue of (3.10), yielding the vector of estimates, τ̂ say, then we conjecture

that the corresponding LM statistic, LM(τ̂ ) say, will have precisely the same properties as LM (τ̂) in

Theorem 1. That is, we conjecture that LM(τ̂ )
d→ χ2

1(c2ω2) under H1 and LM(τ̂ )
d→ χ2

1 under H0

irrespective of whether β3,i = 0 or β3,i 6= 0 for any particular i. For Model B Lavielle and Moulines

(2000) demonstrate that τ̂ i
p→ τ∗i whenever β3,i 6= 0 at the same rate as τ̂

p→ τ∗ in the single break

case considered above. For Model B, it would seem likely that the same parallel with the single break

case would hold, but formally Chang and Perron (2016) only consider the case of a single break in

trend. For both Models A and B one would also need to formally establish that analogous uniformity

arguments to those made in the proof of Theorem 1 can also be made in those cases where β3,i = 0.

Remark 13. The large sample results in Theorem 1 are in sharp contrast to those which hold for

autoregressive unit root tests and stationarity tests which allow for the possibility of trend break(s).

The limiting distributions of these, under both the null and the relevant local alternatives, depend

on the number of trend breaks fitted, the number of breaks present in the data and the locations of

these; see, for example, Perron and Rodŕıguez (2003) in the context of unit root tests, and Busetti

and Harvey (2001,2003) in the context of stationarity tests. In particular, asymptotic null critical

values for these tests differ between the no trend break and trend break cases, and in the latter case

also depend on the true location(s) of the trend break(s). Moreover, their asymptotic local power

functions depend on the number of trend breaks fitted, decreasing the more breaks are fitted, other

things equal. This is not the case in our setting where, as the results in Theorem 1 demonstrate, the

limiting distribution of our feasible LM (τ̂) statistic is independent of any nuisance parameters arising

from the deterministic kernel under both the null hypothesis and local alternatives. However, it is

important to emphasise that this is an asymptotic result and so it will be important to investigate how

well this asymptotic prediction holds up in finite samples. This we will investigate by Monte Carlo

simulation methods in section 4.

Remark 14. Consider the case where an observed time seriers xt satisfies the DGP

xt = β2 + β3DUt (τ∗) + et, t = 1, ..., T

where et ∈ I (d), d ∈ (−0.5, 0.5). In this case, xt may be subject to a change in the mean but it is

otherwise asymptotically stationary and invertible. It should be clear that inference on d in this model

is equivalent to inference on δ in Model B in the context of DGP (2.1). Consequently, the results in

Theorem 1 are also appropriate to this testing problem.
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Remark 15. Observe that under H0, ψ̂ defined in (3.1) and ψ̂ (τ̂) defined for (3.7) evaluated at τ = τ̂

are infeasible and feasible estimates, respectively, of the parameters characterising the (stationary

and invertible) ARMA process, ηt. It is well known that, in the infeasible case,
√
T
(
ψ̂ − ψ∗

)
→d

N
(
0,Φ−1

)
; see, for example, Hamilton (1994), Chapter 5, and Harvey (1993), Chapter 3. This

large sample result also holds when deterministic trend kernels, containing elements such as 1 (a

constant), t (a linear trend), a broken intercept, DUt (τ∗), or a broken trend, DTt (τ∗), (τ∗ assumed

known in the latter two cases), are accounted for so that ψ∗ is estimated using de-trended residuals.

This asymptotic equivalence, formally established in Theorem 4.1 of Nielsen (2004), holds because

deterministic regressors such as these meet condition (12) of Nielsen (2004) or the similar condition

given in Robinson (1994) page 1434. Crucially, however, the stochastic trend break regressors DTt (τ̂)

and DUt (τ̂) do not meet these conditions. Nonetheless, as we demonstrate in Lemma A2, if β3 = 0

then ψ̂ (τ) − ψ̂ = op
(
T−1/2

)
, uniformly in τ ; moreover, as shown in Lemma C2, if β3 6= 0 then

ψ̂ (τ̂) − ψ̂ = op
(
T−1/2

)
. Inference on ψ∗ can therefore be made under H0 using the result that

√
T
(
ψ̂ (τ̂)− ψ∗

)
→d N

(
0,Φ−1

)
. Consequently, an immediate corollary of Lemmas A2 and C2 is that

using the appropriately de-trended residuals instead of ηt does not change the limiting distribution of

the resulting estimate of ψ∗ even when one includes the stochastic regressors DTt (τ̂) or DUt (τ̂).

4 Monte Carlo Simulations

We now present the results from a Monte Carlo simulation study investigating the finite sample

performance of our proposed test based on the LM (τ̂) statistic, exploring cases where no trend

break occurs and where a trend break occurs. We investigate both finite sample size under the null

hypothesis and finite sample power under local alternatives. As benchmarks for comparison, we also

simulate the (infeasible) tests based on: (i) the LM statistic in (3.3), (ii) the LM (τ∗) statistic given

by (3.9) evaluated at τ = τ∗, and (iii) the statistic, LM which is calculated as for the LM (τ̂) statistic

in section 3.2 but replacing zt(τ) by zt throughout, where for Model A, zt := (1, t)′ and for Model

B, zt := 1. Recall that the first benchmark test is based on the unobservable et, while the second

requires knowledge of the true (putative) break location, τ∗. The third benchmark test is based on

the assumption that β3 = 0 in (2.1). Its behaviour when β3 6= 0 allows us to quantify the finite sample

consequences of neglecting a trend break when one is present in the DGP. When β3 = 0 it quantifies

the finite sample power losses that are incurred by unnecessarily allowing for a trend break.

All reported experiments are run over 10,000 Monte Carlo replications using the RNDN function

of Gauss 13. Our simulation DGP is given by (2.1) with β1 = β2 = 0 (this is without loss of generality

because all of the tests considered are exact invariant to β1 and β2) and β3 ∈ {0, 0.1, 1}, with the

break fraction set as τ∗ = 0.5. Notice that LM and LM (τ∗) are also exact invariant with respect to

β3. Excepting the tests based on LM and LM , all tests are computed setting Λ = [0.15, 0.85]. All

reported results are relate to a nominal asymptotic 0.05 level using the relevant critical value from the

χ2
1 distribution.

We first consider the empirical size of these four tests across a range of values of d0 and for sample
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sizes T ∈ {256, 512, 1024}. We generate {ηt} according to ηt = aηt−1 + εt, t = 1, ..., T , with η0 = 0,

for a ∈ {−0.5, 0, 0.5} and with {εt} generated as an i.i.d. N(0, 1) sequence of variables. Consequently,

ηt is also i.i.d. N(0, 1) when a = 0 and is a weakly stationary AR(1) process when a = ±0.5.

The shocks, et, t = 1, ...T , are then generated according to (2.2) to be such that et ∈ I (d0), for

d0 ∈ {0, 0.25, 0.5, 0.75, 1, 1.25}. Recall that Theorem 1 does not cover the case of d0 = 0.5. Finally,

we simulate xt, t = 1, ..., T , according to (2.1) for the values of β1, β2, β3 and τ∗ specified as above.

In calculating the four test statistics we assumed knowledge of the autoregressive order (either zero

or one) for ηt, but not of the parameter a in the case where ηt is an AR(1). Notice that when ηt

is i.i.d., then ω2 = π2/6, otherwise ω2 must be estimated. Following Tanaka (1999,p.564), we used

ω̂2 := π2/6−
(
1− â2

)
(ln (1− â))2 /â2.1

Empirical size results are reported in Table 1, 2 and 3 for a = 0, −0.5, 0.5 respectively. Consider

first the results for the (infeasible) LM test. Due to the exact invariance of the LM test to d0,

results are only reported for d0 = 0. We see that the LM test has size close to the nominal 0.05

level throughout, which we might expect given that it is calculated using the true et. Turning to

the (infeasible) LM (τ∗) test (which is exact invariant to β3), its empirical sizes are also in general

reasonably close to the nominal level for a = 0 and a = −0.5; however, for a = 0.5 it can be

significantly undersized for the smaller values of T considered. For our feasible LM (τ̂) test, a degree

of finite sample oversize is seen for β3 = 0 and β3 = 0.1, for both a = 0 and a = −0.5. For a = 0.5,

similarly to what we observe for the LM (τ∗) test, LM (τ̂) displays a tendency to undersize for the

smaller sample sizes considered, though generally to a lesser extent than is seen for LM (τ∗). We

believe the empirical size results for LM (τ̂) are quite encouraging in that they would appear to show

that relatively little in the way of size control is lost when moving from an LM-type test that requires

knowledge of the (putative) break point to one which makes no such concession. It is also worth noting

that the empirical size results in Tables 1, 2 and 3 for LM (τ̂) differ very little for the case of d0 = 0.5

vis-à-vis those for either d0 = 0.25 or d0 = 0.

Next consider the results for the LM test which show the effect on empirical size of not allowing

for a trend break, both where one occurs in the data (β3 6= 0) and where one does not (β3 = 0).

When β3 = 0 the LM test, similarly to LM (τ∗), demonstrates reasonable size control for a = 0 and

a = −0.5 but is rather undersized when a = 0.5 for the smaller T . However, where β3 6= 0, the LM

test is seen to be completely unreliable, with empirical size reaching 1.0 in many cases. Unsurprisingly,

the degree of size distortion becomes more serious as |β3| increases, this being a measure of the degree

to which the model which omits the trend break is misspecified. The magnitude of the size distortions

in LM are also seen to be larger the smaller is d0, other things equal. This reflects the fact that

omitting the broken trend in the deterministic specification renders the residuals contaminated by

1In the case of LM , â := (
∑T
t=2 η̂tη̂t−1)/(

∑T
t=2 η̂t−1)2 with η̂t := ∆d0

+ et. For LM (τ), evaluated at either τ = τ∗ or

τ = τ̂ , â (τ) :=
∑T
t=2 η̂t (τ) η̂t−1 (τ)/

∑T
t=2

(
η̂t−1 (τ)

)2
, with η̂t (τ) := ∆d0

+ ût (τ) under Model A, and η̂t (τ) := ∆d0−1
+ ût (τ)

under model B. Finally, for LM , â :=
∑T
t=2 ηtηt−1/

∑T
t=2

(
ηt−1

)2
, where: for Model A, ηt := ∆d0

+ ut with ut the OLS

residuals from the regression of xt on (1, t)′ for t = 1, ..., T ; for Model B, ηt (τ) := ∆d0−1
+ ut (τ), with ut the residuals

from the regression of ∆xt on 1 for t = 2, ..., T , setting u1 = 0.
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both a broken trend proportional to (t− bτ∗T c)1−d0 and a linear trend proportional to t1−d0 . Because

(broken) trends have features similar to the properties of an integrated time series, see for example

Iacone (2010), inference on d0 is more heavily contaminated the larger is the exponent (1 − d0) on

these contaminating trend terms in the residuals. Thus, inference when d0 = 0 and more generally for

lower values of d0 is heavily distorted, whereas the contaminating effect when d0 = 1.25 is seen to be

much less dramatic.

We next turn to an examination of the finite sample local power properties of the tests. In order to

save space, we restrict attention to the single sample size T = 512 for the case where ηt is i.i.d. N(0, 1).

In Figures 1-6, results are reported for d0 ∈ {0, 0.25, 0.5, 0.75, 1, 1.25}. We consider an interval of local

alternative values for c chosen as c ∈ {−5.0,−4.75,−4.50, ...,−0.25, 0, 0.25, ..., 4.50, 4.75, 5} which is

symmetric about the null value, c = 0. Local powers of LM (τ̂) for each of β3 = 0, β3 = 0.1 and

β3 = 1 are plotted graphically against c, once more using the 0.05 χ2
1 critical value. Also shown,

again for benchmarking purposes, are the local powers of the LM , LM (τ∗) and LM tests, the latter

is only reported for the case where β3 = 0 because of its very poor size control for non-zero values of

β3 observed in Tables 1-3. Also shown is the relevant asymptotic local power function of the tests;

that is, rejection frequencies for the χ2
1

(
c2π2/6

)
distribution, denoted Asy. This asymptotic power

function is invariant to d0, as is the finite sample local power function of LM . We see that the local

power function for LM lies very close the symmetric (around c = 0) local power function of Asy.

Figure 1 graphs the local power functions of the tests for d0 = 0. For both LM (τ∗) and LM (τ̂), for

a given value v > 0 finite sample powers are higher for c = −v than for c = v. This is also true for LM ,

though to a lesser extent. For c < 0, the powers of LM (τ∗) and LM (τ̂) can exceed the corresponding

asymptotic local power, but this is partly attributable to the slight oversizing of these tests seen in

Table 1. For c > 0, however, these powers fall some way below the corresponding asymptotic local

power values. Indeed, for small values of c > 0, power falls below the nominal level, albeit fairly

modestly. It gives the impression that the finite sample power curves for LM (τ∗) and LM (τ̂) are

rightward shifted relative to the centering of their common asymptotic local power function. We have

no ready explanation as to why such finite sample asymmetry (around c = 0) should occur, but that it

arises for both LM (τ∗) and LM(τ̂), and also for LM , but not for LM , clearly suggests it is connected

to the fact that the first three tests are based on estimated deterministic trend terms; indeed, of

these three tests LM (τ∗) and LM (τ̂) are based on a richer deterministic specification than LM , and

correspondingly appear to show the greater degree of asymmetry. Comparing LM (τ∗) and LM (τ̂),

we see that they generally have fairly similar levels of power, particularly when β3 = 1; this might be

expected since, for a large break magnitude of this kind, τ̂ should be in close proximity to τ∗.

In Figure 2, where d0 = 0.25, most of the same comments made for Figure 1 apply here also.

However, LM (τ∗) does now appear slightly more powerful than LM (τ̂) when β3 = 1. The results for

d0 = 0.5 in Figure 3 appear qualitatively very similar to those for d0 = 0.25.

The corresponding results for d0 = 0.75, d0 = 1 and d = 1.25 are shown in Figures 4, 5 and 6

respectively. Interestingly, when d0 = 0.75 the asymmetry of the LM (τ∗) and LM (τ̂) power curves

(and indeed of LM), appears somewhat less evident than for the three cases discussed above, with
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LM (τ∗) and LM (τ̂) once more demonstrating similar power when β3 = 1. For d0 = 1.0 and d0 = 1.25

the asymmetries in the power functions of LM (τ∗) and LM (τ̂) reappear to some extent; in the latter

case with LM (τ∗) appearing slightly more powerful than LM (τ̂), which suggests that τ̂ is struggling

to estimate τ∗ particularly well by this point.

The overall power performance of LM (τ̂) test should be gauged in context. Expecting it to always

closely replicate the power behaviour of LM or LM (τ∗) tests (let alone the infeasible LM test) in finite

samples represents something of an unrealistic challenge. Respectively, these tests need to correctly

assume that no trend break occurs, or if one does occur, that the true break date is known in order

for their size to controlled, and their powers to be in any way meaningful. As such, they require prior

information that is simply never made available to a practitioner. Conversely, the LM (τ̂) test does

not place any reliance on the veracity of such information. Judged on this basis, we consider that the

relative finite sample power performance of LM (τ̂) across our range of values for d0 is actually more

than acceptable.2

5 Conclusions

In this paper we have been concerned with the problem of conducting inference on the long memory

parameter in the context of a series which is fractionally integrated around a potentially broken

deterministic trend. To that end, we have extended the LM-based testing approach of Robinson (1994),

Tanaka (1999) and Nielsen (2004), which assumes a known functional form for the deterministic kernel,

to the unknown trend break case we consider. This was achieved by basing the LM-type tests on data

which have been de-trended allowing for a trend break with the location of the break estimated by a

residual sum of squares estimator. This estimator was based either on the levels or first differences of

the data dependent on the value imposed on the long memory parameter under the null hypothesis.

We have demonstrated that the resulting LM-type test shares the same large sample asymptotic local

optimality properties as are obtained in the known deterministic kernel case of Robinson (1994),

Tanaka (1999) and Nielsen (2004) and, again like those tests, has asymptotic null critical values

given by the χ2
1 distribution. Unlike conventional unit root and stationarity tests, these results hold

regardless of whether a trend break actually occurs in the data or not. Results were reported from

a Monte Carlo study into the finite-sample behaviour of our proposed test and it was found that the

test performs well in terms of size control and local power levels.
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A Appendix

The conditions stated in Lemma 1 are assumed to hold throughout this appendix. We will use the

nomenclature C throughout to denote a generic positive bound. For a generic matrix B, we denote

by ei (B) the largest eigenvalue of B, and define the norm of B as ‖B‖ :=
{
ei (B′B)

}1/2
. Where

a function of τ is considered, the stochastic orders Op (.) and op (.) will be assumed to hold for the

function using a suitable metric, and, unless specified otherwise, we will use the uniform distance. For

example, from the standard functional central limit theorem [FCLT], if T−1/2
∑bτT c

t=1 εt ⇒ σεW (τ),

where “⇒” indicates convergence in the uniform metric, and W (τ) is a standard Brownian motion,

we will write
∑bτT c

t=1 εt = Op
(
T 1/2

)
. The operator − ln (∆) that appears in the appendix admits the

expansion − ln (∆) =
∑∞

j=1 j
−1Lj (as in a Taylor expansion for − ln (1− x) around x = 1), and for a

generic series ξt we introduce the operator {− ln (∆)}+ so that {− ln (∆)}+ ξt := − ln (∆) {ξtI (t > 0)}
and therefore {− ln (∆)}+ ξt =

∑∞
j=1 j

−1ξt−j . To abbreviate notation (and mirroring the definition of

δ0) we define δ := d if d ∈ (−0.5, 0.5) and δ := d− 1 if d ∈ (0.5, 1.5).

A.1 Proof of Lemma 1

We first detail results under H0; here it holds that d = d0 and δ = δ0. We consider the cases β3 = 0

and β3 6= 0 separately, and for each case we divide the proof into Lemma A1 and Lemma B1, to make

it easier to follow. We then detail in Lemma C1 how to account for the local alternative, Hc. Finally,

we prove Lemma 1 by putting these three lemmas together.

Lemma A1. Let β̂ (τ) be the OLS estimate in (3.5). For β3 = 0, under H0,

KT (d)
(
β̂ (τ)− β

)
= Op (1) . (A.1)

Lemma B1. Let β̂ (τ) be the OLS estimate in (3.5) and τ̂ the minimum RSS estimate in (3.10).

For β3 6= 0 and under H0:

(i) if d0 ∈ (−0.5, 0.5), then

τ̂
p→ τ∗ and τ̂ − τ∗ = Op

(
T−3/2+δ

)
(A.2)

(ii) if d0 ∈ (0.5, 1.5), then

τ̂
p→ τ∗ and τ̂ − τ∗ = Op

(
T−1

)
(A.3)

(iii) for d0 ∈ (−0.5, 0.5) ∪ (0.5, 1.5),

KT (d)
(
β̂ (τ̂)− β

)
= Op (1) . (A.4)

Lemma C1. For α ∈ (−1/2, 1/2), r ≥ 0, r integer,

T−(1/2+α) (ln (T ))−r
bτT c∑
t=1

(
(ln (∆))r ∆−(α+θT )

)
+
ηt−T−(1/2+α) (ln (T ))−r

bτT c∑
t=1

(
(ln (∆))r ∆−α

)
+
ηt = op (1) .
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Proof of Lemma A1:

For Model A, (A.1) is established, in the Skorohod measure, for example, by Iacone, Leybourne and

Taylor (2013a), page 417. For Model B, rate (A.1) in the Skorohod measure is established for the type

1 version of the fractionally integrated process, for example, by Iacone, Leybourne and Taylor (2014);

however, the same result can be derived for the type 2 version using the FCLT in Marinucci and

Robinson (2000). Both results are established using the FCLT T−1/2+δ
∑bτT c

t=1 ut ⇒ σ∞W (τ ; δ) where

W (τ ; δ) is a Type 2 fractional Browinan motion, and the convergence is in the Skorohod measure. To

show that this convergence also holds in the uniform metric, we follow Billingsley (1968), page 153;

for the convergence Xn ⇒ X it is possible to go from the Skorohod to the uniform metric if: (i) the

limit object X lies in C[0, 1], the space of continuous function in [0, 1] with the uniform metric, with

probability 1, and (ii) the jumps of Xn occur at fixed time points rather than at time points with

random position. This applies not only to the standard Brownian motion, but also to both type 1

and type 2 fractional Brownian motions; see Shao (2011) page 604 for an application of this result

for type 1 processes. For condition (i), notice that the type 2 fractional Brownian motion also has

almost surely continuous sample paths see Marinucci and Robinson (1999) page 116. Condition (ii) is

immediately met.

Proof of Lemma B1:

For Model A, (A.2) follows from Chang and Perron (2016), Theorem 1 and Theorem 2, part i (case

for m = 0). Chang and Perron (2016) derive their results for type 1 fractionally integrated processes,

but the same results can be derived for the type 2 version using the FCLT in Marinucci and Robinson

(2000) and bounds from Lavielle and Moulines (2000); in particular, the Hájek-Rényi type inequality

in Lavielle and Moulines (2000) holds for both type 1 and type 2 processes.

For Model B, Theorem 3 and Theorem 7 of Lavielle and Moulines (2000) yield (A.3) for τ∗ ∈ [τU , τL] ⊂
(0, 1). Regarding the case δ < 0 for Model B, notice that, although Lavielle and Moulines (2000) focus

attention on δ > 0, their condition H1 (φ) is still met when δ < 0, with φ = 1; see Lavielle and

Moulines (2000) page 35, where the sufficient condition
∑

s≥0 |E (utut+s)| <∞ is given.

Finally, for Model A, rate (A.4) again follows by adapting results from Theorem 4 of Chang and

Perron (2016). For Model B with δ ≥ 0, (A.4) is given in Bai (1994), Proposition 4, when δ = 0, or

in Lavielle and Moulines (2000), Theorem 8. Lavielle and Moulines (2000) do not explicitly consider

δ < 0, but we show below that the result follows applying the bound in Corollary 2.1 of Lavielle and

Moulines (2000) to the expression in Proposition 4 of Bai (1994). Using our notation, the expression

in the proof of Proposition 4 of Bai (1994) is given by

β̂2 (τ̂)− β̂2 (τ∗) =

(
bτ∗T c − bτ̂T c
bτ∗T c bτ̂T c

∑bτ∗T c
t=1 ut −

1

bτ̂T c
∑bτ∗T c

t=1+bτ̂T c ut

)
I (τ̂ ≤ τ∗) (A.5)

+

(
bτ∗T c − bτ̂T c
bτ∗T c bτ̂T c

∑bτ∗T c
t=1 ut +

1

bτ̂T c
∑bτ̂T c

t=1+bτ∗T c ut + β3

bτ∗T c − bτ̂T c
bτ̂T c

)
I (τ̂ > τ∗) . (A.6)

Because bτ∗T c − bτ̂T c = Op (1) and
∑bτ∗T c

t=1 ut = Op
(
T 1/2+δ

)
, the first term on the right hand side

of (A.5) is Op
(
1× T−2 × T 1/2+δ

)
= Op

(
T−3/2+δ

)
= op

(
T−1/2+δ

)
. As for the second term, it follows
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from Equation (8) of Lavielle and Moulines (2000) that for ε > 0,

sup
i∈Z

P

(
max

k+i≥m+i
k−(1/2+ε)

∣∣∣∑i+k
t=i ut

∣∣∣ ≥ c) ≤ C (1, ε)m1−2(1/2+ε)

so that

sup
i∈Z

P

(
max

k+i≥m+i
k−1|

∑i+k
t=i ut| ≥ c

)
≤ C (1, 1)m−1.

Taking i = bτT c, k = bτ∗T c − bτT c + T ε for ε > 0 we can then allow for m → ∞ and therefore,

uniformly in τ , (bτ∗T c − bτT c+ T ε)−1
∣∣∣∑bτ∗T c+T εt=1+bτT c ut

∣∣∣ = Op (1). Next, notice that∣∣∣∑bτ∗T ct=1+bτT c ut

∣∣∣ =
∣∣∣∑bτ∗T c+T εt=1+bτT c ut −

∑bτ∗T c+T ε
t=1+bτ∗T c ut

∣∣∣
≤

∣∣∣∑bτ∗T c+T εt=1+bτT c ut

∣∣∣+
∣∣∣∑bτ∗T c+T εt=1+bτ∗T c ut

∣∣∣
= Op ((bτ∗T c − bτT c+ T ε) + T ε)

and that
∣∣∣∑bτ∗T ct=1+bτ̂T c ut

∣∣∣ = Op (T ε), using bτ∗T c − bτ̂T c = Op (1). Finally, therefore we have that the

second term on the right hand side of (A.5) is such that

1

bτ̂T c
∑bτ∗T c

t=1+bτ̂T c ut =
bτ∗T c − bτ̂T c
bτ̂T c

× 1

bτ∗T c − bτ̂T c
∑bτ∗T c

t=1+bτ̂T c ut = Op
(
T ε−1

)
= op

(
T−1/2+δ

)
.

Proceeding in the same way, we can also show that the first two terms in (A.6) are of op
(
T−1/2+δ

)
.

Finally, the remainder term β3
bτ∗T c−bτ̂T c
bτ̂T c = Op

(
T−1

)
= op

(
T−1/2+δ

)
using (A.3). As in Proposition

4 of Bai (1994), the proof for β̂3 (τ̂) − β̂3 (τ∗) = op
(
T−1/2+δ

)
proceeds in the same way, and we can

then conclude that β̂ (τ̂)− β̂ (τ∗) = op
(
T−1/2+δ

)
. Rearranging,

KT (d)
(
β̂ (τ̂)− β

)
= KT (d)

(
β̂ (τ̂)− β̂ (τ∗) + β̂ (τ∗)− β

)
= KT (d)

(
β̂ (τ̂)− β̂ (τ∗)

)
+KT (d)

(
β̂ (τ∗)− β

)
then KT (d)

(
β̂ (τ̂)− β̂ (τ∗)

)
= op (1) and KT (d)

(
β̂ (τ∗)− β

)
= Op (1), which establishes (A.4).

Proof of Lemma C1:

By a third order expansion and the mean value theorem,(
(ln (∆))r ∆−(α+θT )

)
+
ηt =

(
(ln (∆))r ∆−α

)
+
ηt − θT

(
(ln (∆))r+1 ∆−α

)
+
ηt

+ 1/2 (θT )2
(

(ln (∆))r+2 ∆−α
)

+
ηt

− 1/6 (θT )3
(

(ln (∆))r+3 ∆−(α+θm,T )
)

+
ηt

for |θm,T | ≤ |θT |. Then proceeding as in Lemma 4 of Robinson (2005),

(
(ln (∆))r+3 ∆−(α+θm,T )

)
{ηtI (t > 0)} = O

{t−1∑
j=1

(
∆m

{
ηt−jI (t > j)

})2}1/2


for m ∈ (−α− 1/2,−α+ 1/2). Noting that, given the range of α, it is always possible to choose

m ∈ (−1/2, 1/2), so that so E
(
∆m

+ηt
)2

= O (1) it therefore follows that

t−1∑
j=1

(
∆m

{
ηt−jI (t > j)

})2
=

t−1∑
j=1

(
∆m

+ηt
)2

= Op (t) .
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We then rewrite

T−(1/2+α) (ln (T ))−r

∣∣∣∣∣∣
bτT c∑
t=1

((
(ln (∆))r ∆−(α+θT )

)
+
ηt −

(
(ln (∆))r ∆−α

)
+
ηt

)∣∣∣∣∣∣
≤ |θT |T−(1/2+α) (ln (T ))−r

∣∣∣∣∣∣
bτT c∑
t=1

(
(ln (∆))r+1 ∆−α

)
+
ηt

∣∣∣∣∣∣ (A.7)

+
1

2
θ2
TT
−(1/2+α) (ln (T ))−r

∣∣∣∣∣∣
bτT c∑
t=1

(
(ln (∆))r+2 ∆−α

)
+
ηt

∣∣∣∣∣∣ (A.8)

+Op

(
T−(1/2+α)

T∑
t=1

t1/2 |θT |3
)
. (A.9)

From Marinucci and Robinson (2000) and the rate for θT , the term in (A.7) is Op
(
T−1/2 ln (T )

)
=

op (1), and the term in (A.8) can be treated in the same way. The remainder (A.9) is Op
(
T−(1/2+α)

)
=

op (1).

Proof of Lemma 1:

• Under H0, Lemma 1 follows directly from Lemmas A1 and B1.

• Under Hc, from Lemma C1, setting r = 0 and α = δ, we can conclude that, when β3 = 0, the result

in (A.1) still holds. For the proof under β3 6= 0, we observe that Chang and Perron (2016) derived

(A.2) using the FCLT for T−(1/2+δ)
∑bτT c

t=1 ∆−δ+ ηt. However, from Lemma C1, this limit coincides with

that of T−(1/2+δ)
∑bτT c

t=1 ∆
−(δ+θT )
+ ηt under Hc. Therefore, (A.2) is also valid under Hc for Model A.

For Model B, (A.3) holds for any δ ∈ (−1/2, 1/2). For T sufficiently large, (δ + θT ) ∈ (−1/2, 1/2) still

holds, so (A.3) still holds. Consequently, (A.4) is still met.

A.2 Proof of Theorem 1

We organise the proof of Theorem 1 in a similar way to the proof of Lemma 1 above. That is, we derive

results under H0 first, considering the cases β3 = 0 and β3 6= 0 separately, and then subsequently

discuss the corresponding results under Hc.

Lemma A2. Under β3 = 0 and H0: (i) ψ̂ (τ)− ψ̂ = op (1), and (ii) T 1/2(ψ̂(τ)− ψ̂) = op (1).

Lemma B2. Recalling that ε̂t(τ) = g(L; ψ̂ (τ))∆δ
+ût (τ) and ε̂t = g(L; ψ̂)∆δ

+ut, and defining v̂t (τ) :=∑t−1
j=1 j

−1ε̂t−j (τ) and v̂t :=
∑t−1

j=1 j
−1ε̂t−j , then under β3 = 0 and H0,

T−1/2
T∑
t=1

ε̂t (τ) v̂t (τ)− T−1/2
T∑
t=1

ε̂tv̂t = op (1) (A.10)

ŝ2 (τ)− ŝ2 = op (1) (A.11)

ω̂2 (τ)− ω̂2 = op (1) . (A.12)

Lemma C2. When β3 6= 0, under H0, T 1/2
(
ψ̂ (τ̂)− ψ̂

)
= op (1).
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Lemma D2. When β3 6= 0, under H0, T−1/2
∑T

t=1 ε̂t (τ̂) v̂t (τ̂)−T−1/2
∑T

t=1 ε̂tv̂t = op (1), ŝ2 (τ̂)−ŝ2 =

op (1), and ω̂2 (τ̂)− ω̂2 = op (1).

Proof of Lemma A2:

We first need to introduce some additional notation, as in Iacone, Leybourne and Taylor (2013b). To

that end, we define

µ1,t := ∆δ {1I (t > 0)} , µ2,t := ∆δ {tI (t > 0)} ,

µ3,t (τ) :=

{
∆δ {(t− bτT c) I (t > bτT c)} for Model A

∆δ {1I (t > bτT c)} for Model B

where, for δ ∈ (−1/2, 0)∪(0, 1/2), we observe from Lemma 1 of Robinson (2005) and Iacone, Leybourne

and Taylor (2013b), page 40, that

µ1,t =
1

Γ (1− δ)
t−δ +O

(
t−1−δ + t−1I (δ > 0)

)
, ∆µ1,t = ∆

(−δ)
t

µ2,t =
1

Γ (2− δ)
t1−δ +

(
t−δ + 1I (δ > 0)

)
, ∆µ2,t = µ1,t.

Next we define ε̂t(ψ) := g(L;ψ)∆δ
+ut and ε̂t (ψ; τ) := g (L;ψ) ∆δ

+ût (τ). Notice therefore that, under

H0, ε̂t(ψ̂) and ε̂t(ψ̂(τ); τ) coincide with ε̂t defined in (3.2) and ε̂t (τ) defined in (3.8), respectively.

Moreover, under H0, ε̂t (ψ∗) = εt.

We may then write the loss functions in (3.1) and (3.7) as
∑T

t=1 (ε̂t (ψ))2 and
∑T

t=1 (ε̂t (ψ; τ))2, re-

spectively. Consistency of ψ̂ is well known in this context, and can be readily established using a

routine consistency argument for implicitly defined extremum estimates; see, for example, Newey and

McFadden (1994). This requires uniform (in ψ) convergence of a suitably scaled version of the loss

function so that T−1
∑T

t=1 (ε̂t (ψ))2 p→ E (g (L;ψ) ηt)
2, together with identification of the parameters

ψ0. The former is established as a uniform weak law of large numbers, that is obtained using pointwise

convergence of the scaled loss function T−1
∑T

t=1 (ε̂t (ψ))2 to the limit, and stochastic equicontinuity;

see page 224 of Andrews (1992). Sufficient conditions for stochastic equiconuity to hold in this case are

that the loss function is differentiable with first derivative bounded in probability; see Assumptions

(b) and (c) on page 246 of Andrews (1992).

Using the same approach as used in Theorem A1 of Andrews (1993), to establish part (i) of the

lemma we need to verify that T−1
(∑T

t=1 (ε̂t (ψ; τ))2 −
∑T

t=1 (ε̂t (ψ))2
)

= op (1) uniformly in both ψ

and τ . Uniformity in ψ can be established using the same arguments outlined above for the case of

estimating ψ̂. We therefore focus here on establishing uniform convergence in τ .

Substituting (3.6) into the definition for ε̂t (ψ; τ), we have that when d0 < 0.5,

ε̂t (ψ; τ) = g (L;ψ) ∆δ
+

(
yt − zt (τ)′ β̂ (τ)

)
= g (L;ψ) ∆δ

+ut + g (L;ψ) ∆δ
+zt (τ)′

(
β − β̂ (τ)

)
(A.13)

= ε̂t (ψ) + g (L;ψ) ∆δ
+zt (τ)′

(
β − β̂ (τ)

)
(A.14)
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and that

T∑
t=1

(ε̂t (ψ; τ))2 −
T∑
t=1

(ε̂t (ψ))2 =
T∑
t=1

(
g (L;ψ) ∆δ

+zt (τ)′
(
β − β̂ (τ)

))2
(A.15)

+ 2
T∑
t=1

(ε̂t (ψ))
(
g (L;ψ) ∆δ

+zt (τ)′
(
β − β̂ (τ)

))
. (A.16)

Where d0 > 0.5, imposing û1 (τ) = 0 adds the remainder term −g (L;ψ) ∆
(−δ)
t u1 to (A.13) and

(A.14), and notice that as et = 0 if t < 0, then u1 = e1 = η1, and so we can write this remainder term

as

−∆
(−δ)
t ε̂1 (ψ) . (A.17)

Consider Model A first. Using (a+ b)2 ≤ 2a2 + 2b2, the left hand side of (A.15) is bounded by

C
T∑
t=1

(
g (L;ψ)µ1,t

)2 (
β1 − β̂1 (τ)

)2
+ C

T∑
t=1

(
g (L;ψ)µ2,t

)2 (
β2 − β̂2 (τ)

)2

+C
T∑
t=1

(
g (L;ψ)µ3,t (τ)

)2 (
β̂3 (τ)

)2

≤ C
T∑
t=1

µ2
1,t

(
β1 − β̂1 (τ)

)2
+ C

T∑
t=1

µ2
2,t

(
β2 − β̂2 (τ)

)2
+ C

T∑
t=1

µ3,t (τ)2
(
β̂3 (τ)

)2

using Lemma 3 of Robinson (2005) and g (1;ψ)2 < C. Then, using the fact that
∑T

t=1 µ3,t (τ)2 =∑T
t=1+bτT c µ3,t (τ)2 ≤

∑T
t=1 µ

2
2,t, the expression above is seen to be of Op (1) using Lemma 1 of Robin-

son (2005) and Lemma A1. The term in (A.16) is Op
(
T 1/2

)
by the Cauchy-Schwarz inequality.

Next we consider Model B. Here the left hand side of (A.15) is bounded by

C
T∑
t=1

(
g (L;ψ)µ1,t

)2 (
β2 − β̂2 (τ)

)2
+ C

T∑
t=1

(
g (L;ψ)µ3,t (τ)

)2 (
β̂3 (τ)

)2

which is again Op (1). Another application of the Cauchy-Schwarz inequality yields that (A.16) is

Op
(
T 1/2

)
. For Model B we also have to account for the additional remainder term in (A.17), so that

we also need to analyse

T∑
t=1

(
∆

(−δ)
t

)2
(ε̂1 (ψ))2 − 2

T∑
t=1

∆
(−δ)
t ε̂1 (ψ) ε̂t (ψ)− 2

T∑
t=1

∆
(−δ)
t ε̂1 (ψ) g (L;ψ) ∆δ

+zt (τ)′
(
β − β̂ (τ)

)
.

(A.18)

Noting that (ε̂1 (ψ))2 = Op (1), uniformly in ψ, and, in view of the fact that |∆(−δ)
t | ∼ Ct−δ−1 when

δ 6= 0, and that |∆(−δ)
t | < Ct−δ−1, it follows that

∑T
t=1(∆

(−δ)
t )2(ε̂1(ψ))2 = Op(

∑T
t=1 t

2(−δ−1)) =

Op (1). As for the second term,
∑T

t=1 ∆
(−δ)
t ε̂1(ψ)ε̂t(ψ) = Op(

∑T
t=1 t

−δ−1), which is Op (1) if δ > 0 and

Op(T
−δ) = op

(
T 1/2

)
if δ < 0, recalling that δ > −0.5. Finally, by the Cauchy-Schwarz inequality the

third term in (A.18) is Op (1), so that the whole expression in (A.18) is of op
(
T 1/2

)
.

Combining the foregoing results we therefore have that

sup
τ

∣∣∣∣ 1

T

(
T∑
t=1

(ε̂t (ψ; τ))2 −
T∑
t=1

(ε̂t (ψ))2

)∣∣∣∣ p→ 0.
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As noted before, this is sufficient to establish that ψ̂ (τ) − ψ̂ = op (1), which therefore completes the

proof of part (i) of the lemma.

We now turn to the proof of part (ii) of the lemma. Minimisation of the loss functions in (3.1) and

(3.7) yield ∑T
t=1 ε̂t (ψ)

∂ε̂t (ψ)

∂ψ

∣∣∣∣
ψ=ψ̂

= 0 and
∑T

t=1 ε̂t (ψ; τ)
∂ε̂t (ψ; τ)

∂ψ

∣∣∣∣
ψ=ψ̂(τ)

= 0

respectively, where

∂ε̂t (ψ)

∂ψ
:=

∂

∂ψ
g(L;ψ)∆δ

+ut

∂2ε̂t (ψ)

∂ψ∂ψ′
:=

∂2

∂ψ∂ψ′
g(L;ψ)∆δ

+ut.

Recalling (A.14), we have that

∂ε̂t (ψ; τ)

∂ψ
=

∂ε̂t (ψ)

∂ψ
+

∂

∂ψ

(
g (L;ψ) ∆δ

+zt (τ)′
(
β − β̂ (τ)

))
∂2ε̂t (ψ; τ)

∂ψ∂ψ′
=

∂2ε̂t (ψ)

∂ψ∂ψ′
+

∂2

∂ψ∂ψ′

(
g (L;ψ) ∆δ

+zt (τ)′
(
β − β̂ (τ)

))
.

As with the treatment of (A.13) and (A.14) above, these expressions should properly be augmented by

additional remainder terms under Model B. However, proceeding as in the derivation of (A.18) above,

these can be ignored with no loss of asymptotic generality and we shall therefore do so hereafter in

the interests in brevity. Next, we define

D1 (ψ) :=
1

T

∑T
t=1

∂ε̂t (ψ)

∂ψ

∂ε̂t (ψ)

∂ψ′
, D2 (ψ) :=

1

T

∑T
t=1 ε̂t (ψ)

∂2ε̂t (ψ)

∂ψ∂ψ′

D (ψ) := D1 (ψ) +D2 (ψ)

and we denote by [D (ψ)]i the i-th row of matrix D (ψ). A mean value theorem expansion of the first

order conditions from loss function (3.1) for the infeasible estimate ψ̂ yields, for the i-th element, ψ̂i,

of ψ̂, ∑T
t=1 ε̂t (ψ)

∂ε̂t (ψ)

∂ψi

∣∣∣∣
ψ=ψ∗

+
[
D
(
ψ̃
i
)]

i

(
ψ̂i − ψ∗i

)
= 0 (A.19)

where ψ̃
i

is a (p+ q) dimensional vector such that ‖ψ̃
i
−ψ∗‖ ≤ ‖ψ̂−ψ∗‖. Stacking the rows

[
D
(
ψ̃
i
)]

i

for all i, denote

D̃
(
ψ̂
)

:=


[
D
(
ψ̃

1
)]

1

...[
D
(
ψ̃
p+q
)]

p+q


and, stacking rows of (A.19) for each i and multiplying by T 1/2, we get

T−1/2∑T
t=1 ε̂t (ψ)

∂ε̂t (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

+ D̃
(
ψ̂
)
T 1/2

(
ψ̂ − ψ∗

)
= 0. (A.20)

Notice that D̃(ψ̂) →p Φσ2
ε; see, for example, Nielsen (2004), part (iii) of Theorem 4.1 (the limit for

D̃(ψ̂) is included in the limit in Nielsen, 2004, as it is a (p+ q) sub-matrix of the matrix in the limit
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in (iii)), and that T−1/2
∑T

t=1 ε̂t (ψ) ∂ε̂t(ψ)
∂ψ

∣∣∣
ψ=ψ∗

= Op (1); see, for example, Nielsen (2004), part (ii) of

Theorem 4.1. This therefore implies that T 1/2(ψ̂ − ψ∗) = Op (1) (indeed it is clear from part (ii) of

Theorem 4.1 of Nielsen (2004) that T 1/2(ψ̂ − ψ∗) has a limiting normal distribution with mean zero

under H0).

To prove (ii) in Lemma A2, we derive an expression similar to (A.20) for the feasible estimate

ψ̂ (τ), from which we can obtain a formula for ψ̂ (τ). Then, define

D1 (ψ; τ) :=
1

T

∑T
t=1

∂ε̂t (ψ; τ)

∂ψ

∂ε̂t (ψ; τ)

∂ψ′
, D2 (ψ; τ) :=

1

T

∑T
t=1 ε̂t (ψ; τ)

∂2ε̂t (ψ; τ)

∂ψ∂ψ′

D (ψ; τ) := D1 (ψ; τ) +D2 (ψ; τ)

and apply the mean value theorem expansion of the first order conditions from loss function (3.7) as

we did for (3.1) beforehand. We then obtain, for the i-th element, ψ̂i (τ), of ψ̂ (τ),∑T
t=1 ε̂t (ψ; τ)

∂ε̂t (ψ; τ)

∂ψi

∣∣∣∣
ψ=ψ∗

+
[
D
(
ψ̃
i
(τ) ; τ

)]
i

(
ψ̂i (τ)− ψ∗i

)
= 0 (A.21)

where [D(ψ̃
i
(τ) ; τ)]i denotes the i-th row of the matrix D (ψ; τ) and ψ̃

i
(τ) is such that ‖ψ̃

i
(τ)−ψ∗‖ ≤

‖ψ̂ (τ) − ψ∗‖. Denoting by D̃(ψ̂ (τ) ; τ) the matrix obtained by stacking of the rows [D(ψ̃
i
(τ) ; τ)]i,

and multiplying by T 1/2, we obtain that

T−1/2∑T
t=1 ε̂t (ψ; τ)

∂ε̂t (ψ; τ)

∂ψ

∣∣∣∣
ψ=ψ∗

+ D̃
(
ψ̂ (τ) ; τ

)
T 1/2

(
ψ̂ (τ)− ψ∗

)
= 0. (A.22)

In order to prove part (ii) of the lemma, we will show that the distance
∥∥∥ψ̂ − ψ̂ (τ)

∥∥∥ is op
(
T−1/2

)
so ψ̂

and ψ̂ (τ) have the same limit distribution. To that end, we first need to establish that the following

result holds:

sup
τ

∥∥∥D̃ (ψ̂)− D̃ (ψ̂ (τ) ; τ
)∥∥∥ p→ 0. (A.23)

To do so, we first expand the summands in D (ψ (τ) ; τ) as follows:

sat (ψ) :=
∂ε̂t (ψ)

∂ψ

∂ε̂t (ψ)

∂ψ′

sbt (ψ; τ) :=
∂ε̂t (ψ)

∂ψ

(
∂

∂ψ′

(
g (L;ψ) ∆δ

+zt (τ)′
(
β − β̂ (τ)

)))
sct (ψ; τ) : =

(
∂

∂ψ

(
g (L;ψ) ∆δ

+zt (τ)′
(
β − β̂ (τ)

))) ∂ε̂t (ψ)

∂ψ′

sdt (ψ; τ) :=

(
∂

∂ψ

(
g (L;ψ) ∆δ

+zt (τ)′
(
β − β̂ (τ)

)))( ∂

∂ψ′

(
g (L;ψ) ∆δ

+zt (τ)′
(
β − β̂ (τ)

)))
set (ψ) := ε̂t (ψ)

∂2ε̂t (ψ)

∂ψ∂ψ′

sft (ψ; τ) := ε̂t (ψ)
∂2

∂ψ∂ψ′

(
g (L;ψ) ∆δ

+zt (τ)′
(
β − β̂ (τ)

))
sgt (ψ; τ) :=

(
g (L;ψ) ∆δ

+zt (τ)′
(
β − β̂ (τ)

)) ∂2ε̂t (ψ)

∂ψ∂ψ′

sht (ψ; τ) :=
(
g (L;ψ) ∆δ

+zt (τ)′
(
β − β̂ (τ)

)) ∂2

∂ψ∂ψ′

(
g (L;ψ) ∆δ

+zt (τ)′
(
β − β̂ (τ)

))
.
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Adding and subtracting Φσ2
ε in (A.23) and using the triangle inequality, the expression in (A.23)

is bounded by
∥∥∥D̃ (ψ̂)− Φσ2

ε

∥∥∥ + supτ

∥∥∥D̃ (ψ̂ (τ) ; τ
)
− Φσ2

ε

∥∥∥, recalling that D̃
(
ψ̂
)
→p Φσ2

ε so that∥∥∥D̃ (ψ̂)− Φσ2
ε

∥∥∥ = op (1).

We then have to show that 1
T

∑T
t=1

(
sat

(
ψ̃ (τ)

)
+ set

(
ψ̃ (τ)

))
−Φσ2

ε = op (1) and that the aver-

ages taken over t = 1, ..., T of sbt

(
ψ̃ (τ) ; τ

)
, sct

(
ψ̃ (τ) ; τ

)
, sdt

(
ψ̃ (τ) ; τ

)
, sft

(
ψ̃ (τ) ; τ

)
, sgt

(
ψ̃ (τ) ; τ

)
and sht

(
ψ̃ (τ) ; τ

)
are all of op (1) for

∥∥∥ψ̃ (τ)− ψ∗
∥∥∥ ≤ ∥∥∥ψ̂ (τ)− ψ∗

∥∥∥. To that end, we first show that

the following results hold:

1

T

∑T
t=1 ε̂t

(
ψ̃ (τ)

)2
− 1

T

∑T
t=1 ε̂t (ψ∗)2 = op (1) (A.24)

1

T

∑T
t=1

∂ε̂t (ψ)

∂ψi

∂ε̂t (ψ)

∂ψj

∣∣∣∣
ψ=ψ̃(τ)

− 1

T

∑T
t=1

∂ε̂t (ψ)

∂ψi

∂ε̂t (ψ)

∂ψj

∣∣∣∣
ψ=ψ∗

= op (1) (A.25)

1

T

∑T
t=1

∂2ε̂t (ψ)

∂ψi∂ψj

∣∣∣∣
ψ=ψ̃(τ)

− 1

T

∑T
t=1

∂2ε̂t (ψ)

∂ψi∂ψj

∣∣∣∣
ψ=ψ∗

= op (1) . (A.26)

Because ηt = b(L;ψ∗)
a(L;ψ∗)εt is a stationary and invertible ARMA process, then g (L;ψ) ηt = a(L;ψ)

b(L;ψ)
b(L;ψ∗)
a(L;ψ∗)εt

is also an ARMA process. For ψi, the i-th element of ψ, ∂
∂ψi

g (L;ψ) ηt and ∂2

∂ψi∂ψj
g (L;ψ) ηt are also

ARMA processes, and so
∣∣∣ ∂
∂ψi

g (1;ψ)
∣∣∣ < C and

∣∣∣ ∂2

∂ψi∂ψj
g (1;ψ)

∣∣∣ < C uniformly in ψ. Proceeding as in

Bai (1993), we illustrate (A.24)-(A.26) for the ARMA(1,1) case, (1− ψ∗1L) ηt = (1 + ψ∗2L) εt.

Consider first (A.24). Because ε̂t (ψ∗) = εt, we rewrite

ε̂t

(
ψ̃ (τ)

)2
− ε2

t =
(
ε̂t

(
ψ̃ (τ)

)
− εt

)2
+ 2εt

(
ε̂t

(
ψ̃ (τ)

)
− εt

)
.

As in Equation (3) of Bai (1993),

ε̂t

(
ψ̃ (τ)

)
− εt = (−1)t−1

(
ψ̃2 (τ)

)t
ε0 −

(
ψ̃1 (τ)− ψ∗1

)∑t−1
j=0 (−1)j

(
ψ̃2 (τ)

)j
ηt−j−1

−
(
ψ̃2 (τ)− ψ∗2

)∑t−1
j=0 (−1)j

(
ψ̃2 (τ)

)j
εt−j−1.

The compactness of Θ means that there exists c < 1 − ε, where ε > 0 depends on Θ, such that

sup |ψ2| < c < 1, and so∣∣∣ε̂t (ψ̃ (τ)
)
− εt

∣∣∣ ≤ ct |ε0|+
(
ψ̃1 (τ)− ψ∗1

)∑t−1
j=0 c

j
∣∣ηt−j−1

∣∣
+
(
ψ̃2 (τ)− ψ∗2

)∑t−1
j=0 c

j |εt−j−1| .

and
∑t−1

j=0 c
j
∣∣ηt−j−1

∣∣ = Op (1) because E
(∣∣ηt−j−1

∣∣) < C and
∑t−1

j=0 c
j <

∑∞
j=0 c

j < C. In the

same way,
∑t−1

j=0 c
j |εt−j−1| = Op (1). Rewriting skt :=

∑t−1
j=0 c

j
∣∣ηt−j−1

∣∣ , slt :=
∑t−1

j=0 c
j |εt−j−1|, then

skt = Op (1) and slt = Op (1) , and sk2
t = Op (1), sl2t = Op (1). Then,

1

T

∑T
t=1

(
ε̂t

(
ψ̃ (τ)

)
− εt

)2
≤ C

T

∑T
t=1 c

2tε2
0 + C

(
ψ̃1 (τ)− ψ∗1

)2 1

T

∑T
t=1 (skt)

2

+C
(
ψ̃2 (τ)− ψ∗2

)2 1

T

∑T
t=1 (slt)

2 .

26



The first term in the foregoing bound is C
T

∑T
t=1 c

2tε2
0 = Op

(
1
T

)
= op (1). As for the second term,

1
T

∑T
t=1 (skt)

2 = Op (1) and, using the rate for
(
ψ̃1 (τ)− ψ∗1

)2
, this is seen to be of op (1). The last

term follows in the same way. Therefore,

1

T

∑T
t=1

(
ε̂t

(
ψ̃ (τ)

)
− εt

)2
= op (1)

and 1
T

∑T
t=1 εt

(
ε̂t

(
ψ̃ (τ)

)
− εt

)
= op (1) by the Cauchy-Schwarz inequality, which concludes the

demonstration of (A.24) for the ARMA(1,1) case. The result holds for the more general ARMA(p, q)

case using a similar but more tedious treatment.

We turn next to the result in (A.25). Proceeding in the same way as for (A.24), it is sufficient to

show that the following results hold:

1

T

∑T
t=1

(
∂ε̂t (ψ)

∂ψi

∣∣∣∣
ψ=ψ̃(τ)

− ∂ε̂t (ψ)

∂ψi

∣∣∣∣
ψ=ψ∗

)2

= op (1) (A.27)

and

1

T

∑T
t=1

(
∂ε̂t (ψ)

∂ψi

∣∣∣∣
ψ=ψ∗

)2

= Op (1) . (A.28)

Consider first the result in (A.27). Again we illustrate this in the ARMA(1,1) case, noting that these

results hold for the more general for the ARMA(p, q) case. In the ARMA(1,1) case, considering ∂ε̂t(ψ)
∂ψ2

first,
∂ε̂t (ψ)

∂ψ2

= −ε̂t−1 (ψ)− ψ2

∂ε̂t−1 (ψ)

∂ψ2

and we observe that

∂ε̂t (ψ)

∂ψ2

∣∣∣∣
ψ=ψ∗

= −εt−1 − ψ∗2
∂ε̂t−1 (ψ)

∂ψ2

∣∣∣∣
ψ=ψ∗

= −
∑t−1

j=0 (−ψ∗2)j εt−j−1 (A.29)

is a AR(1). Taking differences,

∂ε̂t (ψ)

∂ψ2

∣∣∣∣
ψ=ψ̃(τ)

− ∂ε̂t (ψ)

∂ψ2

∣∣∣∣
ψ=ψ∗

= −
(
ε̂t−1

(
ψ̃
)
− εt−1

)
−

(
ψ̃2 (τ)

∂ε̂t−1 (ψ)

∂ψ2

∣∣∣∣
ψ=ψ̃(τ)

− ψ∗2
∂ε̂t−1 (ψ)

∂ψ2

∣∣∣∣
ψ=ψ∗

)

= −
(
ε̂t−1

(
ψ̃ (τ)

)
− εt−1

)
−
(
ψ̃2 (τ)− ψ∗2

) ∂ε̂t−1 (ψ)

∂ψ2

∣∣∣∣
ψ=ψ∗

− ψ̃2 (τ)

(
∂ε̂t−1 (ψ)

∂ψ2

∣∣∣∣
ψ=ψ̃(τ)

− ∂ε̂t−1 (ψ)

∂ψ2

∣∣∣∣
ψ=ψ∗

)

and, iterating,

∂ε̂t (ψ)

∂ψ2

∣∣∣∣
ψ=ψ̃(τ)

− ∂ε̂t (ψ)

∂ψ2

∣∣∣∣
ψ=ψ∗

= −
∑t−1

j=0

(
−ψ̃2 (τ)

)j (
ε̂t−j−1

(
ψ̃ (τ)

)
− εt−j−1

)
−
(
ψ̃2 (τ)− ψ∗2

)∑t−1
j=0

(
−ψ̃2 (τ)

)j ∂ε̂t−j−1 (ψ)

∂ψ2

∣∣∣∣
ψ=ψ∗
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so that

1

T

∑T
t=1

(
∂ε̂t (ψ)

∂ψ2

∣∣∣∣
ψ=ψ̃(τ)

− ∂ε̂t (ψ)

∂ψ2

∣∣∣∣
ψ=ψ∗

)2

≤ 2

T

∑T
t=1

(∑t−1
j=0

(
−ψ̃2 (τ)

)j (
ε̂t−j−1

(
ψ̃ (τ)

)
− εt−j−1

))2

(A.30)

+ 2
(
ψ̃2 (τ)− ψ∗2

)2 1

T

∑T
t=1

(∑t−1
j=0

(
−ψ̃2 (τ)

)j ∂ε̂t−j−1 (ψ)

∂ψ2

∣∣∣∣
ψ=ψ∗

)2

. (A.31)

Consider first the term in (A.30). Using the bound for
∣∣∣ε̂t (ψ̃ (τ)

)
− εt

∣∣∣, this is again bounded by

≤ C

T

∑T
t=1

(∑t−1
j=0 c

j ct−j |ε0|
)2

(A.32)

+
C

T

∑T
t=1

(∑t−1
j=0 c

j
(
ψ̃1 (τ)− ψ∗1

)
skt−j

)2
(A.33)

+
C

T

∑T
t=1

(∑t−1
j=0 c

j
(
ψ̃2 (τ)− ψ∗2

)
slt−j

)2
. (A.34)

The term in (A.33) is bounded by C
(
ψ̃1 (τ)− ψ∗1

)2
1
T

∑T
t=1

(∑t−1
j=0 c

jskt−j

)2
, where it is recalled that∣∣∣ψ̃1 (τ)− ψ∗1

∣∣∣ = op (1). Using skt = Op (1), then
(∑t−1

j=0 c
jskt−j

)2
= Op (1) and it follows that (A.33)

is of op (1). In the same way, using slt = Op (1) we establish
(∑t−1

j=0 c
jslt−j

)2
= Op (1) and then,

recalling that
∣∣∣ψ̃2 (τ)− ψ∗2

∣∣∣ = op (1), we conclude that (A.34) is also of op (1). Finally, (A.32) has

order

1

T

∑T
t=1

(∑t−1
j=0 c

jct−j
)2
≤ 1

T

∑T
t=1

(∑bt/2c
j=0 cjct−j +

∑t
j=bt/2c+1 c

jct−j
)2

≤ C
1

T

∑T
t=1

(
ct/2

∑bt/2c
j=0 cj + ct/2

∑t
j=bt/2c+1 c

t−j
)2
≤ C

T

∑T
t=1

(
ct/2
)2
≤ C

T
.

Next consider the term in (A.31). Recalling (A.29), (A.31) is(
ψ̃2 (τ)− ψ∗

)2 1

T

∑T
t=1

(∑t−1
j=0

(
−ψ̃2 (τ)

)j∑t−j−1
k=0 (−ψ∗2)k εt−k−1

)2

≤
(
ψ̃2 (τ)− ψ∗

)2 1

T

∑T
t=1

(∑t−1
j=0 c

j∑t−j−1
k=0 ck |εt−k−1|

)2

≤
(
ψ̃2 (τ)− ψ∗

)2 1

T

∑T
t=1

(∑t−1
j=0 c

jslt−j

)2

which is seen to be of op (1) using the bound (A.34). These results together establish the result in

(A.27).

Consider next the result in (A.28). Again using (A.29),

∣∣∣∣ ∂ε̂t(ψ)
∂ψ2

∣∣∣
ψ=ψ∗

∣∣∣∣ ≤∑t−1
j=0 c

j |εt−j−1| = slt and the

fact that sl2t = Op (1), it also follows that T−1
∑T

t=1( ∂ε̂t(ψ)
∂ψ2

∣∣∣
ψ=ψ∗

)2 = Op (1). This establishes (A.28)

and therefore completes the proof of the result in (A.25) for ∂ε̂t(ψ)
∂ψ2

∣∣∣
ψ=ψ∗

.

The proofs of (A.27) and (A.28) for ∂ε̂t(ψ)
∂ψ1

∣∣∣
ψ=ψ∗

follow in the same way. The result in (A.26) can

be obtain in a similar fashion and is omitted in the interest of brevity.
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Continuing, we next need to show that

1

T

∑T
t=1 ε̂t (ψ)

∂2ε̂t (ψ)

∂ψi∂ψj

∣∣∣∣
ψ=ψ̃(τ)

− 1

T

∑T
t=1 ε̂t (ψ)

∂2ε̂t (ψ)

∂ψi∂ψj

∣∣∣∣
ψ=ψ∗

= op (1) . (A.35)

The right hand side of (A.35) can be written as

1

T

∑T
t=1

(
ε̂t

(
ψ̃ (τ)

)
− εt

)( ∂2ε̂t (ψ)

∂ψi∂ψj

∣∣∣∣
ψ=ψ̃(τ)

)
+

1

T

∑T
t=1 εt

(
∂2ε̂t (ψ)

∂ψi∂ψj

∣∣∣∣
ψ=ψ̃(τ)

− ∂2ε̂t (ψ)

∂ψi∂ψj

∣∣∣∣
ψ=ψ∗

)

in which each term can be seen to be of op (1), using the limits for (A.24), (A.26) and the Cauchy-

Schwarz inequality.

We next move to an analysis of the contribution of the terms sat, (ψ̃ (τ)), ...., sht(ψ̃(τ); τ) to (A.23).

Recalling that T−1
∑T

t=1(sat(ψ
∗)+set(ψ

∗))→p Φσ2
ε, using (A.25), (A.35) and ‖ψ̃ (τ)−ψ∗‖ ≤ ‖ψ̂ (τ)−

ψ∗‖, it also holds that T−1
∑T

t=1 sat

(
ψ̃ (τ)

)
+ set

(
ψ̃ (τ)

)
→p Φσ2

ε. Next, T−1
∑T

t=1 sdt(ψ̃ (τ) ; τ) =

op (1) and T−1
∑T

t=1 sht(ψ̃(τ); τ) = op (1), proceeding as in the discussion of (A.15). Finally, the

contribution of the terms sbt(ψ̃ (τ) ; τ), sct(ψ̃ (τ) ; τ), sft(ψ̃ (τ) ; τ) and sgt(ψ̃ (τ) ; τ) is of op (1), using

the Cauchy Schwarz-inequality as in the discussion of (A.16). This completes the proof of (A.23).

For the next step of the proof, equating the left hand sides of the two expansions in (A.22) and

(A.20) and re-arranging yields,

T 1/2
(
ψ̂ (τ)− ψ̂

)
= −D̃

(
ψ̂ (τ) ; τ

)−1
T−1/2∑T

t=1 ε̂t (ψ; τ)
∂ε̂t (ψ; τ)

∂ψ

∣∣∣∣
ψ=ψ∗

+

{
D̃
(
ψ̂
)−1
− D̃

(
ψ̂ (τ) ; τ

)−1
+ D̃

(
ψ̂ (τ) ; τ

)−1
}
T−1/2∑T

t=1 ε̂t (ψ)
∂ε̂t (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

= −D̃
(
ψ̂ (τ) ; τ

)−1
T−1/2∑T

t=1

(
ε̂t (ψ; τ)

∂ε̂t (ψ; τ)

∂ψ
− ε̂t (ψ)

∂ε̂t (ψ)

∂ψ

)∣∣∣∣
ψ=ψ∗

+

{
D̃
(
ψ̂
)−1
− D̃

(
ψ̂ (τ) ; τ

)−1
}
T−1/2∑T

t=1 ε̂t (ψ)
∂ε̂t (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

.

Noting that T−1/2
∑T

t=1 ε̂t (ψ) ∂ε̂t(ψ)
∂ψ

∣∣∣
ψ=ψ∗

= Op (1) and that D̃(ψ̂)−1 − D̃(ψ̂ (τ) ; τ)−1 = op (1), the

second term in the expression above is seen to be of op (1). As for the first term, since D̃(ψ̂ (τ) ; τ)−1 p→
(Φσ2

ε)
−1, we need to show that the function of τ given by

T−1/2∑T
t=1

(
ε̂t (ψ; τ)

∂ε̂t (ψ; τ)

∂ψ
− ε̂t (ψ)

∂ε̂t (ψ)

∂ψ

)∣∣∣∣
ψ=ψ∗

(A.36)

is of op (1). To do so, first re-write (A.36) as

T−1/2∑T
t=1

(
g (L;ψ) ∆δ

+zt (τ)′
(
β − β̂ (τ)

)) ∂ε̂t (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

(A.37)

+T−1/2∑T
t=1 ε̂t (ψ)

∂

∂ψ

(
g (L;ψ) ∆δ

+zt (τ)′
(
β − β̂ (τ)

))∣∣∣∣
ψ=ψ∗

(A.38)

+T−1/2∑T
t=1

(
g (L ψ) ∆δ

+zt (τ)′
(
β − β̂ (τ)

)) ∂

∂ψ

(
g (L;ψ) ∆δ

+zt (τ)′
(
β − β̂ (τ)

))∣∣∣∣
ψ=ψ∗

.(A.39)
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In view of Lemma 3 of Robinson (2005), the order of (A.39) is the same as the order of

T−1/2∑T
t=1

(
∆δ

+zt (τ)′
(
β − β̂ (τ)

))2
.

Proceeding as in the discussion of (A.15), when Model A is used, this term is of Op
(
T−1/2

)
= op (1).

Similarly, when Model B is used, it is again of Op
(
T−1/2

)
= op (1). Regarding the term (A.37), using

summation by parts the absolute value of this is bounded by

≤ T−1/2∑T−1
t=1

∣∣∣(g (L;ψ) ∆δ
+zt+1 (τ)− g (L;ψ) ∆δ

+zt (τ)
)∣∣∣′ ∣∣∣(β − β̂ (τ)

)∣∣∣ ∣∣∣∣∑t
s=1

∂ε̂s (ψ)

∂ψ

∣∣∣∣
+T−1/2

∣∣∣(g (L;ψ) ∆δ
+zT (τ)

)∣∣∣′ ∣∣∣β − β̂ (τ)
∣∣∣ ∣∣∣∣∑T

t=1

∂ε̂t (ψ)

∂ψ

∣∣∣∣
and, in view of Lemma 3 of Robinson (2005), this bound has the same order of

≤ T−1/2∑T−1
t=1

∣∣∣(∆δ
+zt+1 (τ)−∆δ

+zt (τ)
)∣∣∣′ ∣∣∣(β − β̂ (τ)

)∣∣∣ ∣∣∣∣∑t
s=1

∂ε̂s (ψ)

∂ψ

∣∣∣∣ (A.40)

+T−1/2
∣∣∣(∆δ

+zT (τ)
)∣∣∣′ ∣∣∣β − β̂ (τ)

∣∣∣ ∣∣∣∣∑T
t=1

∂ε̂t (ψ)

∂ψ

∣∣∣∣ . (A.41)

The term in (A.40) can be bounded as

T−1/2∑T−1
t=1

∣∣∣(∆δzt+1 (τ)−∆δzt (τ)
)∣∣∣′ ∣∣∣(β − β̂ (τ)

)∣∣∣ sup
ρ

∣∣∣∣∑bρT cs=1

∂ε̂s (ψ)

∂ψ

∣∣∣∣
where it holds that supρ

∣∣∣∣∑bρT cs=1
∂ε̂s(ψ)
∂ψ

∣∣∣
ψ=ψ∗

∣∣∣∣ = Op
(
T 1/2

)
, because this is a ARMA process.

When Model A is used,∑T−1
t=1

∣∣∣∣(∆δzt+1 (τ)−∆δzt (τ)
)′ (

β − β̂ (τ)
)∣∣∣∣

≤
∑T−1

t=1

∣∣∆µ1,t+1

∣∣ ∣∣∣β1 − β̂1 (τ)
∣∣∣+
∑T−1

t=1

∣∣∆µ2,t+1

∣∣ ∣∣∣β2 − β̂2 (τ)
∣∣∣+
∑T−1

t=1

∣∣∆µ3,t+1 (τ)
∣∣ ∣∣∣β̂3 (τ)

∣∣∣ .
(A.42)

If δ > 0, the terms in (A.42) are such that∑T−1
t=1

∣∣∆µ1,t+1

∣∣ ∣∣∣β1 − β̂1 (τ)
∣∣∣ = Op

(∑T−1
t=1 t−1T−1/2+δ

)
= Op

(
(ln (T ))T−1/2+δ

)
= op (1)∑T−1

t=1

∣∣∆µ2,t+1

∣∣ ∣∣∣β2 − β̂2 (τ)
∣∣∣ = Op

(∑T−1
t=1 t−δT−3/2+δ

)
= Op

(
T−1/2

)
= op (1)∑T−1

t=1

∣∣∆µ3,t+1 (τ)
∣∣ ∣∣∣β̂3 (τ)

∣∣∣ ≤ ∑T−1
t=1

∣∣∆µ2,t+1

∣∣ ∣∣∣β̂3 (τ)
∣∣∣ = Op

(
T−1/2

)
= op (1)

where we have used the rates from (3.14), and in the last bound we have used the result that

supτ
∑T−1

t=1

∣∣∆µ3,t+1 (τ)
∣∣ ≤∑T−1

t=1

∣∣∆µ2,t+1

∣∣. It then follows that (A.40) is of order op
(
T−1/2 × 1× T 1/2

)
= op (1).3 The remainder term in (A.41) can be shown to be of order

T−1/2 × T−δ × T−1/2+δ × T 1/2 + T−1/2 × T 1−δ × T−3/2+δ × T 1/2 = Op

(
T−1/2

)
.

3Notice that we bound
∣∣∆µ1,t+1

∣∣ = O
(
t−1
)

even though the stronger bound
∣∣∆µ1,t+1

∣∣ = O
(
t−1−δ) holds. We do so

because this bound will be needed in a similar proof in Lemma B2. We therefore prefer to use the weaker bound here so

as to shorten the subsequent proof of Lemma B2.
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If, on the other hand, δ < 0 then the first term in (A.42) is bounded as∑T−1
t=1

∣∣∆µ1,t+1

∣∣ ∣∣∣β1 − β̂1 (τ)
∣∣∣ = Op

(∑T−1
t=1 t−1−δT−1/2+δ

)
= Op

(
T−1/2

)
= op (1) .

The bounds of the other two terms in (A.42) are unaffected by the sign of δ, and it is easily verified

that (A.41) remains of Op
(
T−1/2

)
so that both (A.40) and (A.41) are of Op

(
T−1/2

)
.

When model B is used, ∑T−1
t=1

∣∣∣∣(∆δzt+1 (τ)−∆δzt (τ)
)′ (

β − β̂ (τ)
)∣∣∣∣

≤
∑T−1

t=1

∣∣∆µ1,t+1

∣∣ ∣∣∣β2 − β̂2 (τ)
∣∣∣+
∑T−1

t=1

∣∣∆µ3,t+1 (τ)
∣∣ ∣∣∣β̂3 (τ)

∣∣∣
and notice that supτ

∑T−1
t=1

∣∣∆µ3,t+1 (τ)
∣∣ ≤∑T−1

t=1

∣∣∆µ1,t+1

∣∣. Then, when δ > 0, the functions of τ have

stochastic orders∑T−1
t=1

∣∣∆µ1,t+1

∣∣ ∣∣∣β2 − β̂2 (τ)
∣∣∣ = Op

(∑T−1
t=1 t−1T−1/2+δ

)
= Op

(
(ln (T ))T−1/2+δ

)
= op (1)∑T−1

t=1

∣∣∆µ3,t+1 (τ)
∣∣ ∣∣∣β̂3 (τ)

∣∣∣ ≤ ∑T−1
t=1

∣∣∆µ1,t+1

∣∣ ∣∣∣β̂3 (τ)
∣∣∣ = Op

(
(ln (T ))T−1/2+δ

)
= op (1)

whereas, when δ < 0,∑T−1
t=1

∣∣∆µ1,t+1

∣∣ ∣∣∣β2 − β̂2 (τ)
∣∣∣ = Op

(∑T−1
t=1 t−1−δT−1/2+δ

)
= Op

(
T−δT−1/2+δ

)
= op (1)∑T−1

t=1

∣∣∆µ3,t+1 (τ)
∣∣ ∣∣∣β̂3 (τ)

∣∣∣ ≤ ∑T−1
t=1

∣∣∆µ1,t+1

∣∣ ∣∣∣β̂3 (τ)
∣∣∣ = Op

(
T−δT−1/2+δ

)
= op (1) .

In both cases, it is again easy to show that the remainder, (A.41), is of order Op
(
T−1/2

)
.

Combining the orders established for (A.37) when either Model A or Model is used, it then follows

that (A.37) is of op (1). By similar arguments as used for (A.37), the term in (A.38) can also be shown

to be of op (1), thereby completing the proof of Lemma A2.

Proof of Lemma B2:

Recall that ε̂t and ε̂t (τ) are shorthand notations for ε̂t

(
ψ̂
)

and ε̂t

(
ψ̂ (τ) ; τ

)
, respectively, and define

v̂t

(
ψ̂
)

:=
∑t−1

j=1 j
−1ε̂t−j

(
ψ̂
)

and v̂t

(
ψ̂ (τ) ; τ

)
:=
∑t−1

j=1 j
−1ε̂t−j

(
ψ̂ (τ) ; τ

)
, so that v̂t and v̂t (τ) are

correspondingly shorthand notations for v̂t

(
ψ̂
)

and v̂t

(
ψ̂ (τ) ; τ

)
, respectively.

We consider (A.10) first. To that end, re-write

ε̂t

(
ψ̂ (τ) ; τ

)
v̂t

(
ψ̂ (τ) ; τ

)
− ε̂t

(
ψ̂
)
v̂t

(
ψ̂
)

= ε̂t

(
ψ̂ (τ) ; τ

)
v̂t

(
ψ̂ (τ) ; τ

)
− ε̂t

(
ψ̂ (τ) ; τ

)
v̂t

(
ψ̂
)

+ ε̂t

(
ψ̂ (τ) ; τ

)
v̂t

(
ψ̂
)
− ε̂t

(
ψ̂
)
v̂t

(
ψ̂
)

= ε̂t

(
ψ̂ (τ) ; τ

)(
v̂t

(
ψ̂ (τ) ; τ

)
− v̂t

(
ψ̂
))

+
(
ε̂t

(
ψ̂ (τ) ; τ

)
− ε̂t

(
ψ̂
))

v̂t

(
ψ̂
)

Then it can be seen that (A.10) follows if we can show the following:∑T
t=1 ε̂t

(
ψ̂ (τ) ; τ

)(
v̂t

(
ψ̂ (τ) ; τ

)
− v̂t

(
ψ̂
))

= op

(
T 1/2

)
(A.43)∑T

t=1

(
ε̂t

(
ψ̂ (τ) ; τ

)
− ε̂t

(
ψ̂
))

v̂t

(
ψ̂
)

= op

(
T 1/2

)
. (A.44)
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To that end, observe first that

ε̂t

(
ψ̂ (τ) ; τ

)
− ε̂t

(
ψ̂
)

= ε̂t

(
ψ̂ (τ)

)
− ε̂t

(
ψ̂
)

+ g
(
L; ψ̂ (τ)

)
∆δ

+zt (τ)′
(
β − β̂ (τ)

)
where

g
(
L; ψ̂ (τ)

)
∆δ

+zt (τ)′
(
β − β̂ (τ)

)
= op (1)

and

ε̂t

(
ψ̂ (τ)

)
− ε̂t

(
ψ̂
)

=
(
ψ̂ (τ)− ψ̂

)′ ∂ε̂t (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

+
1

2

(
ψ̂ (τ)− ψ̂

)′ ∂2ε̂t (ψ)

∂ψ∂ψ′

∣∣∣∣
ψ=ψ̃

(
ψ̂ (τ)− ψ̂

)
(A.45)

where
∥∥∥ψ̃ − ψ̂∥∥∥ ≤ ∥∥∥ψ̂ (τ)− ψ̂

∥∥∥ and supψ
∂2ε̂t(ψ)
∂ψ∂ψ′

= Op (1), as ∂2ε̂t(ψ)
∂ψ∂ψ′

is still ARMA (strictly speaking,

the term in (A.45) is only correct if ψ is a scalar; otherwise, a row by row espansion should be

derived, similarly to (A.20), and then stacked as in (A.22), but this approximation does not affect

the results). Consequently, the last term of (A.45) is op
(
T−1

)
, and notice that this holds uniformly

in τ . It then follows that ε̂t

(
ψ̂ (τ)

)
− ε̂t

(
ψ̂
)

= op
(
T−1/2

)
and ε̂t

(
ψ̂ (τ)

)
= Op (1), and finally that

ε̂t

(
ψ̂ (τ) ; τ

)
= Op (1).

In the same way, observe that

v̂t

(
ψ̂ (τ) ; τ

)
− v̂t

(
ψ̂
)

= v̂t

(
ψ̂ (τ)

)
− v̂t

(
ψ̂
)

+ g
(
L; ψ̂ (τ)

){
− ln (∆) ∆δ

}
+
zt (τ)′

(
β − β̂ (τ)

)
where

v̂t

(
ψ̂ (τ)

)
− v̂t

(
ψ̂
)

=
(
ψ̂ (τ)− ψ̂

)′∑t−1
j=1 j

−1 ∂ε̂t−j (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

+ op
(
(ln (t))T−1

)
.

It then follows that v̂t

(
ψ̂ (τ)

)
− v̂t

(
ψ̂
)

= op
(
T−1/2

)
and v̂t

(
ψ̂ (τ)

)
= Op (1) and v̂t

(
ψ̂
)

= Op (1).

Next, let

λ1,t :=
∑t−1

j=1 j
−1µ1,t−j , λ2,t :=

∑t−1
j=1 j

−1µ2,t−j , λ3,t (τ) :=
∑t−1

j=1 j
−1µ3,t−j (τ) ,

and notice that, by Lemma 2 of Robinson (2005),

λ1,t = O
(

ln (t) t−δ
)

, λ2,t = O
(

ln (t) t1−δ
)

, ∆λ2,t+1 = O
(

ln (t+ 1) (t+ 1)−δ
)

and, when δ ∈ (0, 1/2),

∆λ1,t+1 = O
(

ln (t+ 1) (t+ 1)−1
)

,

whereas, when δ ∈ (−1/2, 0),

∆λ1,t+1 = O
(

ln (t+ 1) (t+ 1)−1−δ
)

.

We first consider (A.43). The left hand side of (A.43) is such that,∑T
t=1 ε̂t

(
ψ̂ (τ) ; τ

)(
v̂t

(
ψ̂ (τ) ; τ

)
− v̂t

(
ψ̂
))

=
∑T

t=1 ε̂t

(
ψ̂ (τ) ; τ

)(
v̂t

(
ψ̂ (τ)

)
− v̂t

(
ψ̂
))

(A.46)

+
∑T

t=1 ε̂t

(
ψ̂ (τ) ; τ

)
g
(
L; ψ̂ (τ)

){
− ln (∆) ∆δ

}
zt (τ)′

(
β − β̂ (τ)

)
. (A.47)
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The stochastic order of (A.46) is the same as that of∑T
t=1

∣∣∣ε̂t (ψ̂ (τ) ; τ
)∣∣∣ ∣∣∣v̂t (ψ̂ (τ)

)
− v̂t

(
ψ̂
)∣∣∣ = op

(
T × T−1/2

)
= op

(
T 1/2

)
.

For (A.47), ∣∣∣∑T
t=1 ε̂t

(
ψ̂ (τ) ; τ

)(
v̂t

(
ψ̂ (τ) ; τ

)
− v̂t

(
ψ̂ (τ)

))∣∣∣
≤

∑T−1
t=1

∣∣∣(v̂t+1

(
ψ̂ (τ) ; τ

)
− v̂t+1

(
ψ̂ (τ)

))
−
(
v̂t

(
ψ̂ (τ) ; τ

)
− v̂t

(
ψ̂ (τ)

))∣∣∣
× sup

ρ

∣∣∣∑bρT cs=1 ε̂s

(
ψ̂ (τ) ; τ

)∣∣∣
+
∣∣∣(v̂T (ψ̂ (τ) ; τ

)
− v̂T

(
ψ̂ (τ)

))∣∣∣ ∣∣∣∑T
s=1 ε̂s

(
ψ̂ (τ) ; τ

)∣∣∣ .
Noting that

sup
ρ

∣∣∣∑bρT cs=1 ε̂s

(
ψ̂ (τ) ; τ

)∣∣∣ ≤ sup
ρ

∣∣∣∑bρT cs=1 ε̂t

(
ψ̂ (τ)

)∣∣∣
+ sup

ρ

∣∣∣∑bρT cs=1 g
(
L; ψ̂ (τ)

)
∆δ

+zs (τ)′
(
β − β̂ (τ)

)∣∣∣ (A.48)

the term supρ

∣∣∣∑bρT cs=1 ε̂t

(
ψ̂ (τ)

)∣∣∣ is seen to be of Op
(
T 1/2

)
in view of (A.45) and

ε̂t

(
ψ̂
)

= εt +
(
ψ̂ − ψ

)′ ∂ε̂t (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

+
1

2

(
ψ̂ − ψ

)′ ∂2ε̂t (ψ)

∂ψ∂ψ′

∣∣∣∣
ψ=ψ̃

(
ψ̂ − ψ

)
for
∥∥∥ψ̃ − ψ∥∥∥ ≤ ∥∥∥(ψ̂ − ψ)∥∥∥; also see Theorem 1 of Bai (1993). As for the term (A.48), using the again

the fact that ∆δ0
+ ut is ARMA and Lemma 3 of Robinson (2005), as was done in the proof of Lemma

A2, this term is seen to have the same stochastic order as

sup
ρ

∣∣∣∑bρT cs=1 ∆δ
+zs (τ)′

(
β − β̂ (τ)

)∣∣∣
≤ C

∑T
t=1 µ1,t

∣∣∣β1 − β̂1 (τ)
∣∣∣+
∑T

t=1 µ2,t

∣∣∣β2 − β̂2 (τ)
∣∣∣+
∑T

t=1 µ2,t

∣∣∣β̂3 (τ)
∣∣∣ = Op

(
T 1/2

)
so we conclude that supρ

∣∣∣∑bρT cs=1 ε̂s

(
ψ̂ (τ) ; τ

)∣∣∣ = Op
(
T 1/2

)
. The term∑T−1

t=1

∣∣∣(v̂t+1

(
ψ̂ (τ) ; τ

)
− v̂t+1

(
ψ̂ (τ)

))
−
(
v̂t

(
ψ̂ (τ) ; τ

)
− v̂t

(
ψ̂ (τ)

))∣∣∣
has the same stochastic order as∑T−1

t=1

∣∣∣∣({(ln (∆)) ∆δ
}

+
zt+1 (τ)−

{
(ln (∆)) ∆δ

}
+
zt (τ)

)′ (
β − β̂ (τ)

)∣∣∣∣ .
When Model A is used, the latter is bounded by∑T−1

t=1 |∆λ1,t+1|
∣∣∣β1 − β̂1 (τ)

∣∣∣+
∑T−1

t=1 |∆λ2,t+1|
∣∣∣β2 − β̂2 (τ)

∣∣∣+
∑T−1

t=1 |∆λ3,t+1 (τ)|
∣∣∣β̂3 (τ)

∣∣∣
and then proceeding as in the discussion of (A.40), this is seen to be of Op

(
(ln (T ))2 T−1/2+δ

)
when

δ > 0 and of Op
(
(ln (T ))T−1/2

)
when δ < 0. when Model B is used, The same bounds may be

established in the same way. In all cases the remainder∣∣∣(v̂T (ψ̂ (τ) ; τ
)
− v̂T

(
ψ̂ (τ)

))∣∣∣ ∣∣∣∑T
s=1 ε̂s

(
ψ̂ (τ) ; τ

)∣∣∣ = Op (ln (T )) .
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The stated result in (A.43) is therefore established.

The proof for (A.44) is similar, and we discuss it below. The expression in (A.44) can be written as∑T
t=1 v̂t

(
ψ̂
)(

ε̂t

(
ψ̂ (τ)

)
− ε̂t

(
ψ̂
))

(A.49)

+
∑T

t=1 v̂t

(
ψ̂
)
g
(
L; ψ̂ (τ)

)
∆δ

+zt (τ)′
(
β − β̂ (τ)

)
. (A.50)

As in the case (A.46), is the same as that of∑T
t=1

∣∣∣v̂t (ψ̂)∣∣∣ ∣∣∣ε̂t (ψ̂ (τ)
)
− ε̂t

(
ψ̂
)∣∣∣ = op

(
T × T−1/2

)
= op

(
T 1/2

)
.

Again the discussion of (A.50) is similar to the discussion of (A.47): we apply summation by parts

to (A.50) and discuss the role of the terms g
(
L; ψ̂ (τ)

)
∆δ

+zt (τ)′
(
β − β̂ (τ)

)
as in the discussion

of (A.47), but in this case notice that we must discuss the partial sums
bρT c∑
t=1

v̂t

(
ψ̂
)

. Letting vt :=∑t−1
j=1 j

−1εt−j , for
∥∥∥ψ̃ − ψ∥∥∥ ≤ ∥∥∥(ψ̂ − ψ)∥∥∥

v̂t

(
ψ̂
)

= vt +
(
ψ̂ − ψ

)′∑t−1
j=1 j

−1 ∂ε̂t (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

+
1

2

(
ψ̂ − ψ

)′∑t−1
j=1 j

−1 ∂
2ε̂t (ψ)

∂ψ∂ψ′

∣∣∣∣
ψ=ψ̃

(
ψ̂ − ψ

)
= vt +

(
ψ̂ − ψ

)′∑t−1
j=1 j

−1 ∂ε̂t (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

+ op
(
ln (t)T−1

)
so supρ

∣∣∣∣∣bρT c∑t=1
v̂t

(
ψ̂
)∣∣∣∣∣ = Op

(
ln (T )T 1/2

)
again in view of the FCLT in Marinucci and Robinson (2000)

and (A.50) is op (1). The result in (A.10) is thereby established.

For (A.11),

T∑
t=1

(
ε̂t

(
ψ̂ (τ) ; τ

))2
−

T∑
t=1

(
ε̂t

(
ψ̂
))2

=
T∑
t=1

(
ε̂t

(
ψ̂ (τ) ; τ

)
− ε̂t

(
ψ̂
))

ε̂t

(
ψ̂ (τ) ; τ

)
+

T∑
t=1

ε̂t

(
ψ̂
)(

ε̂t

(
ψ̂ (τ) ; τ

)
− ε̂t

(
ψ̂
))

the two terms of which are of op
(
T 1/2

)
and of op (T ), respectively, proceeding in the same way as in

the discussion of (A.43) and (A.44).

Finally, since κ and Φ are continuous function of ψ, (A.12) follows by an application of Slutzky’s

Theorem.

Proof of Lemma C2.

We have that,

ε̂t (ψ; τ̂) = g (L;ψ) ∆δ
+

(
yt − zt (τ̂)′ β̂ (τ̂)

)
= g (L;ψ) ∆δ

+

(
ut + zt (τ∗)′ β − zt (τ̂)′ β̂ (τ̂)

)
= g (L;ψ) ∆δ

+

(
ut + zt (τ∗)′ β − zt (τ∗)′ β̂ (τ̂) + zt (τ∗)′ β̂ (τ̂)− zt (τ̂)′ β̂ (τ̂)

)
= ε̂t (ψ) + g (L;ψ) ∆δ

+zt (τ∗)′
(
β − β̂ (τ̂)

)
+ g (L;ψ) ∆δ

+ (zt (τ∗)− zt (τ̂))′ β̂ (τ̂) .

(A.51)
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Therefore,

T∑
t=1

(ε̂t (ψ; τ̂))2 −
T∑
t=1

(ε̂t (ψ))2

=
T∑
t=1

(
g (L;ψ) ∆δ

+zt (τ∗)′
(
β − β̂ (τ̂)

))2
+ 2

T∑
t=1

(ε̂t (ψ))
(
g (L;ψ) ∆δ

+zt (τ∗)′
(
β − β̂ (τ̂)

))
(A.52)

+2
T∑
t=1

(ε̂t (ψ)) g (L;ψ) ∆δ
+ (zt (τ∗)− zt (τ̂))′ β̂ (τ̂) (A.53)

+2
T∑
t=1

(
g (L;ψ) ∆δ

+zt (τ∗)′
(
β − β̂ (τ̂)

))(
g (L;ψ) ∆δ

+ (zt (τ∗)− zt (τ̂))′ β̂ (τ̂)
)

(A.54)

+
T∑
t=1

(
g (L;ψ) ∆δ

+ (zt (τ∗)− zt (τ̂))′ β̂ (τ̂)
)2

(A.55)

where the two terms in (A.52) are Op
(
T 1/2

)
uniformly in ψ using (3.11) and proceeding as in Lemma

A2.

As for (A.55), we can again apply Lemma 3 of Robinson (2005) to account for the polynomial

g (L;ψ). Assuming τ∗ < τ̂ (the case τ∗ > τ̂ works in the same way), notice that

T∑
t=1

(
∆δ

+ (zt (τ∗)− zt (τ̂))′ β̂ (τ̂)
)2

=
∑T

t=1

(
µ3,t (τ∗)− µ3,t (τ̂)

)2
β̂3 (τ̂)

and β̂3 (τ̂)
p→ β3 so β̂3 (τ̂) = Op (1). Then this term has the same stochastic order as that of∑T

t=1

(
µ3,t (τ∗)− µ3,t (τ̂)

)2
=
∑bτ̂T c

t=1+bτ∗T c
(
µ3,t (τ∗)

)2
+
∑T

t=1+bτ̂T c
(
µ3,t (τ∗)− µ3,t (τ̂)

)2
.

When Model A is used the first term on the right hand side of the foregoing equation is such that,∑bτ̂T c
t=1+bτ∗T c

(
µ3,t (τ∗)

)2
=
∑bτ̂T c−bτ∗T c

t=1 µ2
2,t ≤ C (bτ̂T c − bτ∗T c)3−2δ = Op

(
T (δ−1/2)×(3−2δ)

)
= op (1)

while in the context of the second term,(
µ3,t (τ∗)− µ3,t (τ̂)

)
=

(
µ3,t (τ∗)− µ3,t−1 (τ∗) + µ3,t−1 (τ∗)− ...− µ3,t (τ̂)

)∣∣µ3,t (τ∗)− µ3,t (τ̂)
∣∣ < C (bτ̂T c − bτ∗T c) (t− bτ̂T c)−δ (A.56)

and ∑T
t=1+bτ̂T c

(
µ3,t (τ∗)− µ3,t (τ̂)

)2 ≤ C (bτ̂T c − bτ∗T c)2∑T
t=1+bτ̂T c (t− bτ̂T c)−2δ

≤ C (bτ̂T c − bτ∗T c)2∑T
t=1 t

−2δ ≤ C (bτ̂T c − bτ∗T c)2 T 1−2δ = Op

(
T (1−3/2+δ)×2T 1−2δ

)
= Op (1) .

When Model B is used,∑bτ̂T c
t=1+bτ∗T c

(
µ3,t (τ∗)

)2
=
∑bτ̂T c−bτ∗T c

t=1 µ2
1,t ≤ C (bτ̂T c − bτ∗T c)1−2δ = Op (1) .

If δ < 0, using
∣∣µ1,t+1 − µ1,t

∣∣ < Ct−δ−1,∑T
t=1+bτ̂T c

(
µ3,t (τ∗)− µ3,t (τ̂)

)2 ≤ C (bτ̂T c − bτ∗T c)2∑T
t=1+bτ̂T c (t− bτ̂T c)−2δ−2

≤ C (bτ̂T c − bτ∗T c)2∑T
t=1 t

−2δ−2 ≤ C (bτ̂T c − bτ∗T c)2 = Op (1)
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recalling −2δ − 2 < −1 as δ > −1/2;
∑T

t=1+bτ̂T c
(
µ3,t (τ∗)− µ3,t (τ̂)

)2
= Op (1); when δ > 0, using∣∣µ1,t+1 − µ1,t

∣∣ < Ct−1, the stochastic order of
∑T

t=1+bτ̂T c
(
µ3,t (τ∗)− µ3,t (τ̂)

)2
is

∑T
t=1+bτ̂T c

(
µ3,t (τ∗)− µ3,t (τ̂)

)2 ≤ C (bτ̂T c − bτ∗T c)2∑T
t=1+bτ̂T c (t− bτ̂T c)−2

≤ C (bτ̂T c − bτ∗T c)2∑T
t=1 t

−2δ−2 ≤ C (bτ̂T c − bτ∗T c)2 = Op (1) .

It therefore, follows that

T∑
t=1

(
g (L;ψ) ∆δ

+ (zt (τ∗)− zt (τ̂))′ β̂ (τ̂)
)2

= Op (1) (A.57)

and
1

T

T∑
t=1

(
g (L;ψ) ∆δ

+ (zt (τ∗)− zt (τ̂))′ β̂ (τ̂)
)2 p→ 0 (A.58)

uniformly in ψ, thereby accounting for (A.55). The two remaining cross products in the expansion of∑T
t=1 (ε̂t (ψ; τ̂))2−

∑T
t=1 (ε̂t (ψ))2, (A.53) and (A.54), can be dealt with by applications of the Cauchy-

Schwarz inequality. Consequently, 1
T

∣∣∣∑T
t=1 (ε̂t (ψ; τ̂))2 −

∑T
t=1 (ε̂t (ψ))2

∣∣∣ p→ 0 uniformly in ψ, and we

can conclude that ψ̂ (τ̂)− ψ̂ p→ 0.

To complete the proof of Lemma C2, we again proceed as in the proof of Lemma A2 and account

for the extra term g (L;ψ) ∆δ (zt (τ∗)− zt (τ̂))′ β̂ (τ̂). The result in (A.58) and additional applications

of the Cauchy-Schwarz inequality are sufficient to extend the arguments used in establishing Lemma

A2 to conclude that D̃
(
ψ̂
)−1
− D̃

(
ψ̂ (τ̂) ; τ̂

)−1 p→ 0 still holds. To complete the second part of

Lemma C2 we need to check the stochastic order of (A.36) when τ = τ̂ and β3 6= 0. Here we need to

demonstrate that

T−1/2
T∑
t=1

(
∆δ

+ (zt (τ∗)− zt (τ̂))′ β̂ (τ̂)
)2 p→ 0 (A.59)

T−1/2
T∑
t=1

(
∆δ

+ (zt (τ∗)− zt (τ̂))′ β̂ (τ̂)
)

∆δ
+zt (τ∗)′

(
β − β̂ (τ̂)

)
p→ 0 (A.60)

and

T−1/2
T∑
t=1

(
∆δ

+ (zt (τ∗)− zt (τ̂))′ β̂ (τ̂)
) ∂εt (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

p→ 0 (A.61)

T−1/2
T∑
t=1

(
∆δ

+ (zt (τ∗)− zt (τ̂))′ β̂ (τ̂)
)
εt (ψ∗)

p→ 0. (A.62)

The first two limits are readily established, using (A.57) for (A.59) and, in the case (A.60), the bound

for the right hand side of (A.15) and an application of the Cauchy-Schwarz inequality.

Assuming that τ̂ > τ∗, the expression in (A.61) has the same order as that of

T−1/2
bτ̂T c∑

t=1+bτ∗T c
µ3,t (τ∗)

∂εt (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

+ T−1/2
T∑

t=1+bτ̂T c

(
µ3,t (τ∗)− µ3,t (τ̂)

) ∂εt (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

where we note that ∂εt(ψ)
∂ψ

∣∣∣
ψ=ψ∗

is still ARMA.
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Using summation by parts,∣∣∣∣∣ bτ̂T c∑
t=1+bτ∗T c

µ3,t (τ∗)
∂εt (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

∣∣∣∣∣ (A.63)

≤
bτ̂T c−1∑

t=1+bτ∗T c

∣∣∆µ3,t+1 (τ∗)
∣∣ max

1+bτ∗T c≤t≤bτ̂T c−1

∣∣∣∣∣ t−1∑
s=1+bτ∗T c

∂εs (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

∣∣∣∣∣ (A.64)

+µ3,bτ̂T c (τ∗)

∣∣∣∣∣ bτ̂T c∑
t=1+bτ∗T c

∂εt (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

∣∣∣∣∣ (A.65)

and ∣∣∣∣∣ T∑
t=1+bτ̂T c

(
µ3,t (τ∗)− µ3,t (τ̂)

) ∂εt (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

∣∣∣∣∣ (A.66)

≤
T−1∑

t=1+bτ̂T c

∣∣∆ (µ3,t+1 (τ∗)− µ3,t+1 (τ̂)
)∣∣ max

1+bτ̂T c≤t≤T−1

∣∣∣∣∣ t−1∑
s=1+bτ̂T c

∂εs (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

∣∣∣∣∣ (A.67)

+
∣∣µ3,T (τ∗)− µ3,T (τ̂)

∣∣ ∣∣∣∣∣ T∑
t=1+bτ̂T c

∂εt (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

∣∣∣∣∣ . (A.68)

We discuss Model A first, beginning with (A.63). Here,

bτ̂T c−1∑
t=1+bτ∗T c

∣∣∆µ3,t+1 (τ∗)
∣∣ =

bτ̂T c−bτ∗T c∑
t=1

∣∣∆µ1,t

∣∣ ≤ C bτ̂T c−bτ∗T c∑
t=1

t−δ ≤ C (bτ̂T c − bτ∗T c)1−δ

while

max
1+bτ∗T c≤t≤bτ̂T c−1

∣∣∣∣∣ t−1∑
s=1+bτ∗T c

∂εs (ψ)

∂ψ

∣∣∣∣∣ (A.69)

≤ max
1+bτ∗T c≤t≤bτ̂T c−1

∣∣∣(t− bτ∗T c)1/2
∣∣∣ max

1+bτ∗T c≤t≤bτ̂T c−1

∣∣∣∣∣(t− bτ∗T c)−1/2
t−1∑

s=1+bτ∗T c

∂εs (ψ)

∂ψ

∣∣∣∣∣
≤ (bτ̂T c − bτ∗T c)1/2 max

1+bτ∗T c≤t≤bτ̂T c−1

∣∣∣∣∣(t− bτ∗T c)−1/2
t−1∑

s=1+bτ∗T c

∂εs (ψ)

∂ψ

∣∣∣∣∣
≤ (bτ̂T c − bτ∗T c)1/2 max

1+bτ∗T c≤t≤T

∣∣∣∣∣(t− bτ∗T c)−1/2
t−1∑

s=1+bτ∗T c

∂εs (ψ)

∂ψ

∣∣∣∣∣
and, using Equation (8) of Bai (1994),

max
1+bτ∗T c≤t≤T

∣∣∣∣∣(t− bτ∗T c)−1/2
t−1∑

s=1+bτ∗T c

∂εt (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

∣∣∣∣∣ = Op (ln (T ))

so that the stochastic order of (A.69) is the same as (bτ̂T c − bτ∗T c)1/2 ln (T ) and the order of (A.64)

is the same as,

(bτ̂T c − bτ∗T c)1−δ (bτ̂T c − bτ∗T c)1/2 ln (T )

which is of op (1) using (3.12).
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For the remainder term (A.65), µ3,bτ̂T c (τ∗) ≤ C (bτ̂T c − bτ∗T c)1−δ. Again using Equation (8) of

Bai (1994), (A.65) has the same stochastic order as

(bτ̂T c − bτ∗T c)1−δ × ln (T )× (bτ̂T c − bτ∗T c)1/2

which is of op (1). Hence, the stochastic order of (A.63) is op (1) if Model A is used.

Moving to (A.66), this is bounded by

T−1∑
t=1+bτ̂T c

∣∣∆ (µ3,t+1 (τ∗)− µ3,t+1 (τ̂)
)∣∣max

ρ, θ

∣∣∣∣∣ bτT c∑s=bρT c ∂εs (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

∣∣∣∣∣
where maxρ, θ

∣∣∣∣∣ bτT c∑s=bρT c ∂εs(ψ)
∂ψ

∣∣∣
ψ=ψ∗

∣∣∣∣∣ = Op
(
T 1/2

)
. Noticing that

∆
(
µ3,t (τ∗)− µ3,t (τ̂)

)
= ∆

(
µ3,t (τ∗)− µ3,t−1 (τ∗) + µ3,t−1 (τ∗)− ...− µ3,t (τ̂)

)
and the bound for ∆µ1,t, then, if δ > 0,∣∣∆ (µ3,t (τ∗)− µ3,t (τ̂)

)∣∣ < C (bτ̂T c − bτ∗T c) (t− bτ̂T c)−1

and

T−1∑
t=1+bτ̂T c

∣∣∆ (µ3,t+1 (τ∗)− µ3,t+1 (τ̂)
)∣∣ ≤ C (bτ̂T c − bτ∗T c)

T−1∑
t=1+bτ̂T c

(t− bτ̂T c)−1

≤ C (bτ̂T c − bτ∗T c)
T∑
t=1

t−1 ≤ C (bτ̂T c − bτ∗T c) ln (T ) = Op

(
T−1/2+δ ln (T )

)
so that (A.67) is of order Op

(
T−1/2+δ × ln (T )× T 1/2

)
= Op

(
T δ ln (T )

)
= op

(
T 1/2

)
. If δ < 0,∣∣∆ (µ3,t (τ∗)− µ3,t (τ̂)

)∣∣ < C (bτ̂T c − bτ∗T c) (t− bτ̂T c)−1−δ

T−1∑
t=1+bτ̂T c

∣∣∆ (µ3,t+1 (τ∗)− µ3,t+1 (τ̂)
)∣∣ ≤ C (bτ̂T c − bτ∗T c)T−δ

and (A.67) has stochastic order as

(bτ̂T c − bτ∗T c)T−δT 1/2 = Op

(
T−1/2+δT−δT 1/2

)
= Op (1) = op

(
T 1/2

)
.

So, regardless of whether δ < 0 or δ > 0, (A.67) is of op
(
T 1/2

)
.

For the remainder term in (A.68), recalling (A.56),∣∣µ3,T (τ∗)− µ3,T (τ̂)
∣∣ < C (bτ̂T c − bτ∗T c)T−δ = Op

(
T−1/2+δ × T−δ

)
= Op

(
T−1/2

)
then (A.68) is of order Op

(
T−1/2 × T 1/2

)
= Op (1). Therefore, under Model A, (A.63) and (A.66) are

op
(
T 1/2

)
and (A.61) is op (1).

When Model B is used, if δ < 0,

bτ̂T c−1∑
t=1+bτ∗T c

∣∣∆µ3,t+1 (τ∗)
∣∣ =

bτ̂T c−bτ∗T c∑
t=1

∣∣∆µ1,t

∣∣ ≤ C bτ̂T c−bτ∗T c∑
t=1

t−1−δ ≤ C (bτ̂T c − bτ∗T c)−δ
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and, recalling the bound for (A.69), (A.64) has stochastic order

(bτ̂T c − bτ∗T c)−δ × (bτ̂T c − bτ∗T c)1/2 ln (T ) = Op (ln (T ))

where we have used the result that (bτ̂T c − bτ∗T c) = Op (1), as in (3.13).

If δ > 0,
bτ̂T c−1∑

t=1+bτ∗T c

∣∣∆µ3,t+1 (τ∗)
∣∣ ≤ C bτ̂T c−bτ∗T c∑

t=1
t−1 ≤ C ln (T )

recalling the bound for (A.69), then (A.64) has stochastic order Op((ln (T ))2). Thus, regardless of δ,

(A.64) has order Op((ln (T ))2). For the remainder term in (A.65), µ3,bτ̂T c (τ∗) ≤ C (bτ̂T c − bτ∗T c)−δ

and so (A.65) has the same stochastic order as that of (bτ̂T c − bτ∗T c)−δ×ln (T )×(bτ̂T c − bτ∗T c)1/2 =

Op (ln (T )). Consequently, (A.63) is of Op

(
(ln (T ))2

)
.

Turning to (A.66), recall first that(
µ3,t (τ∗)− µ3,t (τ̂)

)
=
(
µ3,t (τ∗)− µ3,t−1 (τ∗) + µ3,t−1 (τ∗)− ...− µ3,t (τ̂)

)
then ∣∣µ3,t (τ∗)− µ3,t (τ̂)

∣∣ < C (bτ̂T c − bτ∗T c) (t− bτ̂T c)−1−δ

if δ < 0, and ∣∣µ3,t (τ∗)− µ3,t (τ̂)
∣∣ < C (bτ̂T c − bτ∗T c) (t− bτ̂T c)−1

if δ > 0. Where δ < 0, (A.66) is therefore bounded by

T∑
t=1+bτ̂T c

C (bτ̂T c − bτ∗T c) (t− bτ̂T c)−δ−1

∣∣∣∣∣ ∂εt (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

∣∣∣∣∣
≤

T∑
t=1+bτ̂T c

C (bτ̂T c − bτ∗T c) (t− bτ̂T c)−δ−1 sup
t

∣∣∣∣∣ ∂εt (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

∣∣∣∣∣
≤ C (bτ̂T c − bτ∗T c)

T∑
t=1

t−δ−1 sup
t

∣∣∣∣∣ ∂εt (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

∣∣∣∣∣ .
Using

sup
t

∣∣∣∣∣ ∂εt (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

∣∣∣∣∣ = Op

(
T 1/q

)
(A.70)

the stochastic order is

Op

(
T∑
t=1

t−δ−1T 1/q

)
= Op

(
T−δ+1/q

)
= op

(
T 1/2

)
in view of the condition that q > 1/ (1/2 + δ) imposed by Assumption 1. Where δ > 0, (A.66) is

bounded by

C (bτ̂T c − bτ∗T c)
T∑
t=1

t−1 sup
t

∣∣∣∣∣ ∂εt (ψ)

∂ψ

∣∣∣∣
ψ=ψ∗

∣∣∣∣∣ = O
(

ln (T )T 1/q
)

= op

(
T 1/2

)
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using the fact that q > 2.

To complete the proof of Lemma C2, we now need only show (A.70). We first show that, for εt an

independent and identically distributed sequence with E |εt|p <∞ for p ≥ 1, then,

sup
t
|εt| = Op

(
T 1/p

)
.

Notice that max |εt|p ≤
∑T

t=1 |εt|
p, and, since E |εt|p < ∞ implies |εt|p = Op (1), it then follows that

max |εt|p = Op (T ), or |εt|p = Op (T ), uniformly in t. Note that max |εt|p = (max |εt|)p as the power

is a monotone mapping. Thus, |εt| = Op
(
T 1/p

)
uniformly in t. Next, for ηt =

∑∞
j=0 cjεt−j with∑∞

j=0 j |cj | < ∞ (notice that this condition is met in ARMA models) and with p ≥ 2, we establish

supt |ηt| = Op
(
T 1/p

)
. Let ε̃t :=

∑∞
j=T+1 cjεt−j , so that ηt =

∑T
j=0 cjεt−j + ε̃t, and

sup
t
|ηt| ≤

T∑
j=0

|cj | sup
t
|εt−j |+ sup

t
|̃εt|

where
∑T

j=0 |cj | supt |εt−j | ≤ supt |εt|
∑∞

j=0 |cj | = Op
(
T 1/p

)
. Also, notice that max |̃εt| = Op((E(max ε̃2

t ))
1/2)

and max ε̃2
t ≤

∑T
t=1 ε̃

2
t and E

(
ε̃2
t

)
=
∑∞

j=T+1 c
2
j = Op

(
T−1

)
in view of the fact that

∑∞
j=1 j |cj | <∞.

Hence, max ε̃2
t = Op (1) and max |̃εt| = Op (1). Therefore,

sup
t
|ηt| = Op

(
T 1/p + 1

)
= Op

(
T 1/p

)
. (A.71)

The stated bound in (A.70) then follows from (A.71) with p = q, while the stated bound for (A.62)

can be established in the same way.

Proof of Lemma D2.

Using the expansion in (A.51) again, the first two terms can be accounted for proceeding as in

the proof of Lemma B2, using (3.11) in place of (3.14). The additional contribution of the term

g (L;ψ) ∆δ
+ (zt (τ∗)− zt (τ̂))′ β̂ (τ̂) is discussed proceeding as in Lemma C2.

Proof of Theorem 1.

We derive the result under H0 and β3 = 0 first. Re-write Â (τ) = T−1/2
∑T

t=1 ε̂t (τ) v̂t (τ) /ŝ2 (τ) and,

in view of Lemma B2 and continuity, Â (τ)− Â = op
(
T−1/2

)
; in the same way, LM (τ)−LM = op (1).

The proof for β3 6= 0 is similar, but uses Lemma C2 and Lemma D2 instead. Where Hc holds, the

results in Lemma A2, Lemma B2, Lemma C2 and Lemma D2 can be straightforwardly extended,

applying the mean value theorem expansion used in Lemma C1, to show that the rate is not affected

under the alternative.
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Table 1. Empirical size of tests, a = 0

T LM LM LM(τ∗) LM(τ̂)

d0 β3 = 0 β3 = 0.1 β3 = 1 β3 = 0 β3 = 0.1 β3 = 1

256 0.048 0.041 1.000 1.000 0.050 0.069 0.065 0.050

0 512 0.047 0.043 1.000 1.000 0.054 0.069 0.064 0.054

1024 0.047 0.046 1.000 1.000 0.052 0.060 0.059 0.052

256 0.041 1.000 1.000 0.050 0.072 0.065 0.058

0.25 512 0.044 1.000 1.000 0.054 0.069 0.065 0.058

1024 0.045 1.000 1.000 0.053 0.060 0.059 0.055

256 0.039 0.857 1.000 0.048 0.069 0.065 0.057

0.5 512 0.042 1.000 1.000 0.050 0.065 0.060 0.057

1024 0.044 1.000 1.000 0.051 0.059 0.055 0.054

256 0.036 0.122 1.000 0.038 0.039 0.047 0.040

0.75 512 0.040 0.372 1.000 0.042 0.045 0.047 0.045

1024 0.044 0.886 1.000 0.046 0.048 0.049 0.046

256 0.036 0.042 1.000 0.041 0.060 0.059 0.044

1 512 0.039 0.051 1.000 0.043 0.063 0.063 0.044

1024 0.044 0.063 1.000 0.045 0.059 0.057 0.046

256 0.037 0.038 0.316 0.042 0.068 0.069 0.055

1.25 512 0.039 0.039 0.429 0.043 0.071 0.070 0.050

1024 0.044 0.045 0.546 0.045 0.064 0.062 0.052

41



Table 2. Empirical size of tests, a = −0.5

T LM LM LM(τ∗) LM(τ̂)

d0 β3 = 0 β3 = 0.1 β3 = 1 β3 = 0 β3 = 0.1 β3 = 1

256 0.051 0.042 0.966 1.000 0.055 0.074 0.072 0.055

0 512 0.052 0.047 1.000 1.000 0.058 0.073 0.068 0.058

1024 0.047 0.044 1.000 1.000 0.052 0.062 0.058 0.052

256 0.042 1.000 1.000 0.057 0.079 0.075 0.060

0.25 512 0.046 1.000 1.000 0.057 0.076 0.069 0.057

1024 0.045 1.000 1.000 0.052 0.063 0.061 0.052

256 0.039 0.998 0.998 0.055 0.078 0.074 0.064

0.5 512 0.044 1.000 1.000 0.054 0.073 0.064 0.061

1024 0.045 1.000 1.000 0.050 0.062 0.056 0.055

256 0.037 0.338 1.000 0.039 0.034 0.034 0.039

0.75 512 0.042 0.869 1.000 0.043 0.040 0.044 0.043

1024 0.041 1.000 1.000 0.042 0.043 0.045 0.046

256 0.037 0.050 1.000 0.041 0.059 0.061 0.041

1 512 0.042 0.078 1.000 0.045 0.064 0.061 0.045

1024 0.042 0.126 1.000 0.045 0.058 0.056 0.044

256 0.035 0.035 0.757 0.040 0.071 0.071 0.044

1.25 512 0.043 0.043 0.905 0.046 0.072 0.071 0.048

1024 0.042 0.045 0.976 0.045 0.065 0.064 0.046
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Table 3. Empirical size of tests, a = 0.5

T LM LM LM(τ∗) LM(τ̂)

d0 β3 = 0 β3 = 0.1 β3 = 1 β3 = 0 β3 = 0.1 β3 = 1

256 0.048 0.010 0.949 0.997 0.018 0.032 0.032 0.025

0 512 0.050 0.023 1.000 1.000 0.036 0.059 0.056 0.040

1024 0.048 0.032 1.000 1.000 0.044 0.066 0.061 0.044

256 0.010 0.351 0.452 0.018 0.034 0.034 0.031

0.25 512 0.023 0.243 1.000 0.037 0.062 0.059 0.054

1024 0.032 0.999 1.000 0.046 0.071 0.064 0.060

256 0.015 0.081 1.000 0.019 0.031 0.036 0.031

0.5 512 0.025 0.725 1.000 0.036 0.062 0.058 0.055

1024 0.032 1.000 1.000 0.045 0.072 0.063 0.061

256 0.010 0.019 0.092 0.010 0.011 0.013 0.011

0.75 512 0.019 0.077 0.112 0.022 0.021 0.024 0.023

1024 0.026 0.302 0.458 0.030 0.031 0.034 0.030

256 0.011 0.013 0.517 0.012 0.021 0.021 0.014

1 512 0.021 0.024 0.961 0.024 0.039 0.039 0.025

1024 0.026 0.035 1.000 0.033 0.052 0.050 0.036

256 0.012 0.012 0.033 0.013 0.028 0.027 0.025

1.25 512 0.021 0.021 0.075 0.023 0.050 0.049 0.041

1024 0.026 0.027 0.123 0.034 0.061 0.060 0.051
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Figure 1. Local power of tests, T = 512, d0 = 0.

Asy LM LM, β3 = 0 LM (τ∗)

LM (τ̂) , β3 = 0 LM (τ̂) , β3 = 0.1 LM (τ̂) , β3 = 1
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Figure 2. Local power of tests, T = 512, d0 = 0.25.

Asy LM LM, β3 = 0 LM (τ∗)

LM (τ̂) , β3 = 0 LM (τ̂) , β3 = 0.1 LM (τ̂) , β3 = 1

ii



Figure 3. Local power of tests, T = 512, d0 = 0.5.

Asy LM LM, β3 = 0 LM (τ∗)

LM (τ̂) , β3 = 0 LM (τ̂) , β3 = 0.1 LM (τ̂) , β3 = 1

iii



Figure 4. Local power of tests, T = 512, d0 = 0.75.

Asy LM LM, β3 = 0 LM (τ∗)

LM (τ̂) , β3 = 0 LM (τ̂) , β3 = 0.1 LM (τ̂) , β3 = 1

iv



Figure 5. Local power of tests, T = 512, d0 = 1.

Asy LM LM, β3 = 0 LM (τ∗)

LM (τ̂) , β3 = 0 LM (τ̂) , β3 = 0.1 LM (τ̂) , β3 = 1
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Figure 6. Local power of tests, T = 512, d0 = 1.25.

Asy LM LM, β3 = 0 LM (τ∗)

LM (τ̂) , β3 = 0 LM (τ̂) , β3 = 0.1 LM (τ̂) , β3 = 1
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