380 research outputs found

    Scenario modelling of basin-scale, shallow landslide sediment yield, Valsassina, Italian Southern Alps

    No full text
    International audienceThe SHETRAN model for determining the sediment yield arising from shallow landsliding at the scale of a river catchment was applied to the 180-km2 Valsassina basin in the Italian Southern Alps, with the aim of demonstrating that the model can simulate long term patterns of landsliding and the associated sediment yields and that it can be used to explore the sensitivity of the landslide sediment supply system to changes in catchment characteristics. The model was found to reproduce the observed spatial distribution of landslides from a 50-year record very well but probably with an overestimate of the annual rate of landsliding. Simulated sediment yields were within the range observed in a wider region of northern Italy. However, the results suggest that the supply of shallow landslide material to the channel network contributes relatively little to the overall long term sediment yield compared with other sources. The model was applied for scenarios of possible future climate (drier and warmer) and land use (fully forested hillslopes). For both scenarios, there is a modest reduction in shallow landslide occurrence and the overall sediment yield. This suggests that any current schemes for mitigating sediment yield impact in Valsassina remain valid. The application highlights the need for further research in eliminating the large number of unconditionally unsafe landslide sites typically predicted by the model and in avoiding large overestimates of landslide occurrence

    Modelling the impact of forest loss on shallow landslide sediment yield, Ijuez river catchment, Spanish Pyrenees

    No full text
    International audienceThe SHETRAN model for simulating the sediment yield arising from shallow landslides at the scale of a river catchment was applied to the 45-km2 Ijuez catchment in the central Spanish Pyrenees, to investigate the effect of loss of forest cover on landslide and debris flow incidence and on catchment sediment yield. The application demonstrated how such a model, with a large number of parameters to be evaluated, can be used even when directly measured data are not available: rainfall and discharge time series were generated by reference to other local records and data providing the basis for a soil map were obtained by a short field campaign. Uncertainty bounds for the outputs were determined as a function of the uncertainty in the values of key model parameters. For a four-year period and for the existing forested state of the catchment, a good ability to simulate the observed long term spatial distribution of debris flows (represented by a 45-year inventory) and to determine catchment sediment yield within the range of regional observations was demonstrated. The lower uncertainty bound on simulated landslide occurrence approximated the observed annual rate of landsliding and suggests that landslides provide a relatively minor proportion of the total sediment yield, at least in drier years. A scenario simulation in which the forest cover was replaced by grassland indicated an increase in landsliding but a decrease in the number of landslides which evolve into debris flows and, at least for drier years, a reduction in sediment delivery to the channel network

    Diurnal Differences in Intracellular Replication Within Splenic Macrophages Correlates With the Outcome of Pneumococcal Infection

    Get PDF
    Circadian rhythms affect the progression and severity of bacterial infections including those caused by Streptococcus pneumoniae, but the mechanisms responsible for this phenomenon remain largely elusive. Following advances in our understanding of the role of replication of S. pneumoniae within splenic macrophages, we sought to investigate whether events within the spleen correlate with differential outcomes of invasive pneumococcal infection. Utilising murine invasive pneumococcal disease (IPD) models, here we report that infection during the murine active phase (zeitgeber time 15; 15h after start of light cycle, 3h after start of dark cycle) resulted in significantly faster onset of septicaemia compared to rest phase (zeitgeber time 3; 3h after start of light cycle) infection. This correlated with significantly higher pneumococcal burden within the spleen of active phase-infected mice at early time points compared to rest phase-infected mice. Whole-section confocal microscopy analysis of these spleens revealed that the number of pneumococci is significantly higher exclusively within marginal zone metallophilic macrophages (MMMs) known to allow intracellular pneumococcal replication as a prerequisite step to the onset of septicaemia. Pneumococcal clusters within MMMs were more abundant and increased in size over time in active phase-infected mice compared to those in rest phase-infected mice which decreased in size and were present in a lower percentage of MMMs. This phenomenon preceded significantly higher levels of bacteraemia alongside serum IL-6 and TNF-alpha concentrations in active phase-infected mice following re-seeding of pneumococci into the blood. These data greatly advance our fundamental knowledge of pneumococcal infection by linking susceptibility to invasive pneumococcal infection to variation in the propensity of MMMs to allow persistence and replication of phagocytosed bacteria. These findings also outline a somewhat rare scenario whereby the active phase of an organism's circadian cycle plays a seemingly counterproductive role in the control of invasive infection

    Impact Factor: outdated artefact or stepping-stone to journal certification?

    Full text link
    A review of Garfield's journal impact factor and its specific implementation as the Thomson Reuters Impact Factor reveals several weaknesses in this commonly-used indicator of journal standing. Key limitations include the mismatch between citing and cited documents, the deceptive display of three decimals that belies the real precision, and the absence of confidence intervals. These are minor issues that are easily amended and should be corrected, but more substantive improvements are needed. There are indications that the scientific community seeks and needs better certification of journal procedures to improve the quality of published science. Comprehensive certification of editorial and review procedures could help ensure adequate procedures to detect duplicate and fraudulent submissions.Comment: 25 pages, 12 figures, 6 table

    Demographic and biologic influences on survival in whites and blacks: 40 years of follow-up in the Charleston heart study

    Get PDF
    BACKGROUND: In the United States, life expectancy is significantly lower among blacks than whites. We examined whether socioeconomic status (SES) and cardiovascular disease (CVD) risk factors may help explain this disparity. METHODS: Forty years (1961 through 2000) of all-cause mortality data were obtained on a population-based cohort of 2,283 subjects in the Charleston Heart Study (CHS). We examined the influence of SES and CVD risk factors on all-cause mortality. RESULTS: Complete data were available on 98% of the original sample (647 white men, 728 white women, 423 black men, and 443 black women). After adjusting for SES and CVD risk factors, the hazard ratios (HRs) for white ethnicity were 1.14 (0.98 to 1.32) among men and 0.90 (0.75 to 1.08) among women, indicating that the mortality risk was 14% greater for white men and 10% lower for white women compared to their black counterparts. However the differences were not statistically significant. CONCLUSION: While there are marked contrasts in mortality among blacks and whites in the CHS, the differences can be largely explained by SES and CVD risk factors. Continued focus on improving and controlling cardiovascular disease risk factors may reduce ethnic disparities in survival
    corecore