237 research outputs found

    Естественная радиоактивность кольчугинской серии отложений Ленинского геолого-экономического района Кузбасса

    Get PDF
    Рассматриваются на основании исследования 1435 образцов горных пород естественные радиоактивные свойства мелко- и крупнозернистого алевролитов и мелкозернистого песчаника, а также каменных углей. Отмечается различие по естественной радиоактивности между основными литологическими разностями пород, слагающих кольчугинскую серию. Естественная радиоактивность пород закономерно уменьшается от алевролитов к песчаникам и к углям. Угли по естественной радиоактивности резко отличаются от вмещающих пород

    Structural and electrical characterization of SiO2 gate dielectrics deposited from solutions at moderate temperatures in air

    Get PDF
    Silicon dioxide (SiO2) is the most widely used dielectric for electronic applications. It is usually produced by thermal oxidation of silicon or by using a wide range of vacuum-based techniques. By default, the growth of SiO2 by thermal oxidation of silicon, requires the use of Si substrates whereas the other deposition techniques either produce low quality or poor interface material and mostly require high deposition or annealing temperatures. Recent investigations therefore have focused on the development of alternative deposition paradigms based on solutions. Here, we report the deposition of SiO2 thin film dielectrics deposited by spray pyrolysis in air at moderate temperatures of 350 oC from pentane-2,4-dione solutions of SiCl4. SiO2 dielectrics were investigated by means of UV–Vis absorption spectroscopy, spectroscopic ellipsometry, XPS, XRD, UFM/AFM, admittance spectroscopy, and field-effect measurements. Data analysis reveals smooth (RRMS<1 nm) amorphous films with a dielectric constant of about 3.8, an optical band gap of ≈8.1 eV, leakage current densities in the order of ≈10-7 A/cm2 at 1 MV/cm and high dielectric strength in excess of 5 MV/cm. XPS measurements confirm the SiO2 stoichiometry and FTIR spectra reveal features related to SiO2 only. Thin film transistors implementing spray coated SiO2 gate dielectrics and C60 and pentacene semiconducting channels exhibit excellent transport characteristics i.e. negligible hysteresis, low leakage currents, high on/off current modulation ratio in the order of 106 and high carrier mobility

    道徳と幸福 : カント倫理思想の一考察

    Get PDF
    Asthma is a serious health problem and during the last decade various experimental models of asthma have been developed to study the pathogenesis of this disease. In this study we describe a new mouse model of asthma that uses the spores of Alternaria alternata and Cladosporium herbarum, two allergenic molds recognized as common inducers of rhinitis and asthma in humans. Here we demonstrate that A. alternata and C. herbarum spores are immunogenic when injected into BALB/c mice, and induce the production of specific IgM and IgG1 antibodies and strongly increase IgE serum levels. To induce the allergic response, mice were sensitized by two intraperitoneal (i.p.) injections and then intranasaly (i.n.) challenged with A. alternata and C. herbarum spores. Bronchoalveolar lavages (BALs) from these mice contained numerous macrophages, neutrophils, eosinophils and lymphocytes whereas neutrophils were the predominant BAL inflammatory cells in nonsensitized mice. Histological studies demonstrated an influx of eosinophils in peri-vascular and peri-bronchial areas and the presence of numerous epithelial goblet cells only in sensitized mice. Increased expression of mRNA specific for various chemokines (eotaxin, MIP-1α, MIP-2) and chemokine receptors (CCR-1, CCR-2 and CCR-5) was observed in the lungs of nonsensitized mice challenged with the spores. Expression of CCR-3 mRNA in the lungs and Th2 cytokine (IL-4, IL-5 and IL-13) secretion in the BAL was additionally observed in sensitized and challenged mice. Finally we demonstrate through whole-body plethysmography that mold spore sensitization and challenge induce the development of an airway hyperreactivity in response to nebulized methacholine

    Modulation of lung inflammation by vessel dilator in a mouse model of allergic asthma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Atrial natriuretic peptide (ANP) and its receptor, NPRA, have been extensively studied in terms of cardiovascular effects. We have found that the ANP-NPRA signaling pathway is also involved in airway allergic inflammation and asthma. ANP, a C-terminal peptide (amino acid 99–126) of pro-atrial natriuretic factor (proANF) and a recombinant peptide, NP73-102 (amino acid 73–102 of proANF) have been reported to induce bronchoprotective effects in a mouse model of allergic asthma. In this report, we evaluated the effects of vessel dilator (VD), another N-terminal natriuretic peptide covering amino acids 31–67 of proANF, on acute lung inflammation in a mouse model of allergic asthma.</p> <p>Methods</p> <p>A549 cells were transfected with pVD or the pVAX1 control plasmid and cells were collected 24 hrs after transfection to analyze the effect of VD on inactivation of the extracellular-signal regulated receptor kinase (ERK1/2) through western blot. Luciferase assay, western blot and RT-PCR were also performed to analyze the effect of VD on NPRA expression. For determination of VD's attenuation of lung inflammation, BALB/c mice were sensitized and challenged with ovalbumin and then treated intranasally with chitosan nanoparticles containing pVD. Parameters of airway inflammation, such as airway hyperreactivity, proinflammatory cytokine levels, eosinophil recruitment and lung histopathology were compared with control mice receiving nanoparticles containing pVAX1 control plasmid.</p> <p>Results</p> <p>pVD nanoparticles inactivated ERK1/2 and downregulated NPRA expression in vitro, and intranasal treatment with pVD nanoparticles protected mice from airway inflammation.</p> <p>Conclusion</p> <p>VD's modulation of airway inflammation may result from its inactivation of ERK1/2 and downregulation of NPRA expression. Chitosan nanoparticles containing pVD may be therapeutically effective in preventing allergic airway inflammation.</p

    Attenuated expression of tenascin-c in ovalbumin-challenged STAT4-/- mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Asthma leads to structural changes in the airways, including the modification of extracellular matrix proteins such as tenascin-C. The role of tenascin-C is unclear, but it might act as an early initiator of airway wall remodelling, as its expression is increased in the mouse and human airways during allergic inflammation. In this study, we examined whether Th1 or Th2 cells are important regulators of tenascin-C in experimental allergic asthma utilizing mice with impaired Th1 (STAT4-/-) or Th2 (STAT6-/-) immunity.</p> <p>Methods</p> <p>Balb/c wildtype (WT), STAT4-/- and STAT6-/- mice were sensitized with intraperitoneally injected ovalbumin (OVA) followed by OVA or PBS airway challenge. Airway hyperreactivity (AHR) was measured and samples were collected. Real time PCR and immunohistochemistry were used to study cytokines and differences in the expression of tenascin-C. Tenascin-C expression was measured in human fibroblasts after treatment with TNF-α and IFN-γ <it>in vitro</it>.</p> <p>Results</p> <p>OVA-challenged WT mice showed allergic inflammation and AHR in the airways along with increased expression of TNF-α, IFN-γ, IL-4 and tenascin-C in the lungs. OVA-challenged STAT4-/- mice exhibited elevated AHR and pulmonary eosinophilia. The mRNA expression of TNF-α and IFN-γ was low, but the expression of IL-4 was significantly elevated in these mice. OVA-challenged STAT6-/- mice had neither AHR nor pulmonary eosinophilia, but had increased expression of mRNA for TNF-α, IFN-γ and IL-4. The expression of tenascin-C in the lungs of OVA-challenged STAT4-/- mice was weaker than in those of OVA-challenged WT and STAT6-/- mice suggesting that TNF-α and IFN-γ may regulate tenascin-C expression <it>in vivo</it>. The stimulation of human fibroblasts with TNF-α and IFN-γ induced the expression of tenascin-C confirming our <it>in vivo </it>findings.</p> <p>Conclusions</p> <p>Expression of tenascin-C is significantly attenuated in the airways of STAT4-/- mice, which may be due to the impaired secretion of TNF-α and IFN-γ in these mice.</p
    corecore