3,426 research outputs found

    The metallicity dependence of WR winds

    Get PDF
    Wolf-Rayet (WR) stars are the most advanced stage in the evolution of the most massive stars. The strong feedback provided by these objects and their subsequent supernova (SN) explosions are decisive for a variety of astrophysical topics such as the cosmic matter cycle. Consequently, understanding the properties of WR stars and their evolution is indispensable. A crucial but still not well known quantity determining the evolution of WR stars is their mass-loss rate. Since the mass loss is predicted to increase with metallicity, the feedback provided by these objects and their spectral appearance are expected to be a function of the metal content of their host galaxy. This has severe implications for the role of massive stars in general and the exploration of low metallicity environments in particular. Hitherto, the metallicity dependence of WR star winds was not well studied. In this contribution, we review the results from our comprehensive spectral analyses of WR stars in environments of different metallicities, ranging from slightly super-solar to SMC-like metallicities. Based on these studies, we derived empirical relations for the dependence of the WN mass-loss rates on the metallicity and iron abundance, respectively.Comment: 5 pages, 4 figures, to be published in the Proceedings of the IAU Symposium No. 329 "The lives and death-throes of massive stars

    Wolf-Rayet stars in the Small Magellanic Cloud: I. Analysis of the single WN stars

    Full text link
    Wolf-Rayet (WR) stars have a severe impact on their environments owing to their strong ionizing radiation fields and powerful stellar winds. Since these winds are considered to be driven by radiation pressure, it is theoretically expected that the degree of the wind mass-loss depends on the initial metallicity of WR stars. Following our comprehensive studies of WR stars in the Milky Way, M31, and the LMC, we derive stellar parameters and mass-loss rates for all seven putatively single WN stars known in the SMC. Based on these data, we discuss the impact of a low-metallicity environment on the mass loss and evolution of WR stars. The quantitative analysis of the WN stars is performed with the Potsdam Wolf-Rayet (PoWR) model atmosphere code. The physical properties of our program stars are obtained from fitting synthetic spectra to multi-band observations. In all SMC WN stars, a considerable surface hydrogen abundance is detectable. The majority of these objects have stellar temperatures exceeding 75 kK, while their luminosities range from 10^5.5 to 10^6.1 Lsun. The WN stars in the SMC exhibit on average lower mass-loss rates and weaker winds than their counterparts in the Milky Way, M31, and the LMC. By comparing the mass-loss rates derived for WN stars in different Local Group galaxies, we conclude that a clear dependence of the wind mass-loss on the initial metallicity is evident, supporting the current paradigm that WR winds are driven by radiation. A metallicity effect on the evolution of massive stars is obvious from the HRD positions of the SMC WN stars at high temperatures and high luminosities. Standard evolution tracks are not able to reproduce these parameters and the observed surface hydrogen abundances. Homogeneous evolution might provide a better explanation for their evolutionary past.Comment: 18+12 pages; 22+8 figures; accepted for publication in A&

    The rapid evolution of the exciting star of the Stingray Nebula

    Get PDF
    SAO244567, the exciting star of the Stingray nebula, is rapidly evolving. Previous analyses suggested that it has heated up from an effective temperature of about 21kK in 1971 to over 50kK in the 1990s. Canonical post-asymptotic giant branch evolution suggests a relatively high mass while previous analyses indicate a low-mass star. Fitting line profiles from static and expanding non-LTE model atmospheres to the observed UV and optical spectra, taken during 1988-2013, allowed us to study the temporal change of effective temperature, surface gravity, mass-loss rate, and terminal wind velocity. In addition, we determined the chemical composition of the atmosphere. We find that the central star has steadily increased its effective temperature from 38kK in 1988 to a peak value of 60kK in 2002. During the same time, the star was contracting, as concluded from an increase in surface gravity from log g = 4.8 to 6.0 and a drop in luminosity. Simultaneously, the mass-loss rate declined from log (dM/dt/Msun/yr)=-9.0 to -11.6 and the terminal wind velocity increased from 1800km/s to 2800km/s. Since around 2002, the star stopped heating and has cooled down again to 55kK by 2006. It has a largely solar surface composition with the exception of slightly subsolar carbon, phosphorus, and sulfur. By comparison with stellar-evolution calculations, we confirm that SAO244567 must be a low-mass star (M < 0.55 Msun). However, the slow evolution of the respective stellar evolutionary models is in strong contrast to the observed fast evolution and the young planetary nebula with a kinematical age of only about 1000 years. We speculate that the star could be a late He-shell flash object. Alternatively, it could be the outcome of close-binary evolution. Then SAO244567 would be a low-mass (0.354 Msun) helium prewhite dwarf after the common-envelope phase, during which the planetary nebula was ejected.Comment: 16 pages, 13 figures, accepted for publication in A&

    Defect complexes formed with Ag atoms in CDTE, ZnTe, and ZnSe

    Get PDF
    Using the radioactive acceptor 111 ⁣^{111}\!Ag for perturbed γ\gamma-γ\gamma-angular correlation (PAC) spectroscopy for the first time, defect complexes formed with Ag are investigated in the II-VI semiconductors CdTe, ZnTe and ZnSe. The donors In, Br and the Te-vacancy were found to passivate Ag acceptors in CdTe via pair formation, which was also observed in In-doped ZnTe. In undoped or Sb-doped CdTe and in undoped ZnSe, the PAC experiments indicate the compensation of Ag acceptors by the formation of double broken bond centres, which are characterised by an electric field gradient with an asymmetry parameter close to h = 1. Additionally, a very large electric field gradient was observed in CdTe, which is possibly connected with residual impurities

    The Metallicity of the Redshift 4.16 Quasar BR2248-1242

    Get PDF
    We estimate the metallicity in the broad emission-line region of the redshift z=4.16 quasar, BR2248-1242, by comparing line ratios involving nitrogen to theoretical predictions. BR2248-1242 has unusually narrow emission lines with large equivalent widths, thus providing a rare opportunity to measure several line-ratio abundance diagnostics. The combined diagnostics indicate a metallicity of ~2 times solar. This result suggests that an episode of vigorous star formation occurred near BR2248-1242 prior to the observed z=4.16 epoch. The time available for this enrichment episode is only ~1.5 Gyr at z=4.16 (for H_{0}=65 km s^-1 Mpc^-1, Omega_{m}=0.3 and Omega_Lambda ~< 1). This evidence for high metallicities and rapid star formation is consistent with the expected early-epoch evolution of dense galactic nuclei.Comment: 8 pages, 3 figures. Prepared in AAStex. Submitted to the Astrophysical Journal Revised version: added 1 referenc

    Stellar population of the superbubble N206 in the LMC I. Analysis of the Of-type stars

    Full text link
    Massive stars are the key agents of feedback. Consequently, quantitative analysis of massive stars are required to understand how the feedback of these objects shapes/ creates the large scale structures of the ISM. The giant HII region N206 in the Large Magellanic Cloud contains an OB association that powers a X-ray superbubble, serving as an ideal laboratory in this context. We obtained optical spectra with the muti-object spectrograph FLAMES at the ESO-VLT. When possible, the optical spectroscopy was complemented by UV spectra from the HST, IUE, and FUSE archives. Detailed spectral classifications are presented for our sample Of-type stars. For the quantitative spectroscopic analysis we use the Potsdam Wolf-Rayet (PoWR) model atmosphere code. The physical parameters and nitrogen abundances of our sample stars are determined by fitting synthetic spectra to the observations. The stellar and wind parameters of nine Of-type stars are used to construct wind momentum,luminosity relationship. We find that our sample follows a relation close to the theoretical prediction, assuming clumped winds. The most massive star in the N206 association is an Of supergiant which has a very high mass-loss rate. Two objects in our sample reveal composite spectra, showing that the Of primaries have companions of late O subtype. All stars in our sample have an evolutionary age less than 4 million years, with the O2-type star being the youngest. All these stars show a systematic discrepancy between evolutionary and spectroscopic masses. All stars in our sample are nitrogen enriched. Nitrogen enrichment shows a clear correlation with increasing projected rotational velocities. The mechanical energy input from the Of stars alone is comparable to the energy stored in the N206 superbubble as measured from the observed X-ray and H alpha emission.Comment: Accepted for the pubblication in Astronomy & Astrophysic

    Observational properties of massive black hole binary progenitors

    Full text link
    The first directly detected gravitational waves (GW 150914) were emitted by two coalescing black holes (BHs) with masses of ~36Msun and ~29Msun. Several scenarios have been proposed to put this detection into an astrophysical context. The evolution of an isolated massive binary system is among commonly considered models. Various groups have performed detailed binary-evolution calculations that lead to BH merger events. However, the question remains open as to whether binary systems with the predicted properties really exist. The aim of this paper is to help observers to close this gap by providing spectral characteristics of massive binary BH progenitors during a phase where at least one of the companions is still non-degenerate. Stellar evolution models predict fundamental stellar parameters. Using these as input for our stellar atmosphere code (PoWR), we compute a set of models for selected evolutionary stages of massive merging BH progenitors at different metallicities. The synthetic spectra obtained from our atmosphere calculations reveal that progenitors of massive BH merger events start their lives as O2-3V stars that evolve to early-type blue supergiants before they undergo core-collapse during the Wolf-Rayet phase. When the primary has collapsed, the remaining system will appear as a wind-fed high-mass X-ray binary. We provide feedback parameters, broad band magnitudes, and spectral templates that should help to identify such binaries in the future. Comparisons of empirically determined mass-loss rates with those assumed by evolution calculations reveal significant differences. The consideration of the empirical mass-loss rates in evolution calculations will possibly entail a shift of the maximum in the predicted binary-BH merger rate to higher metallicities, that is, more candidates should be expected in our cosmic neighborhood than previously assumed.Comment: 64 pages, 30 figures, accepted for publication in Astronomy & Astrophysics, v2: typos correcte
    corecore