59 research outputs found

    Design and Construction of a Double Inversion Recombination Switch for Heritable Sequential Genetic Memory

    Get PDF
    Background: Inversion recombination elements present unique opportunities for computing and information encoding in biological systems. They provide distinct binary states that are encoded into the DNA sequence itself, allowing us to overcome limitations posed by other biological memory or logic gate systems. Further, it is in theory possible to create complex sequential logics by careful positioning of recombinase recognition sites in the sequence. Methodology/Principal Findings: In this work, we describe the design and synthesis of an inversion switch using the fim and hin inversion recombination systems to create a heritable sequential memory switch. We have integrated the two inversion systems in an overlapping manner, creating a switch that can have multiple states. The switch is capable of transitioning from state to state in a manner analogous to a finite state machine, while encoding the state information into DNA. This switch does not require protein expression to maintain its state, and ‘‘remembers’ ’ its state even upon cell death. We were able to demonstrate transition into three out of the five possible states showing the feasibility of such a switch. Conclusions/Significance: We demonstrate that a heritable memory system that encodes its state into DNA is possible, and that inversion recombination system could be a starting point for more complex memory circuits. Although the circuit di

    DeviceEditor visual biological CAD canvas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Biological Computer Aided Design (bioCAD) assists the <it>de novo </it>design and selection of existing genetic components to achieve a desired biological activity, as part of an integrated design-build-test cycle. To meet the emerging needs of Synthetic Biology, bioCAD tools must address the increasing prevalence of combinatorial library design, design rule specification, and scar-less multi-part DNA assembly.</p> <p>Results</p> <p>We report the development and deployment of web-based bioCAD software, DeviceEditor, which provides a graphical design environment that mimics the intuitive visual whiteboard design process practiced in biological laboratories. The key innovations of DeviceEditor include visual combinatorial library design, direct integration with scar-less multi-part DNA assembly design automation, and a graphical user interface for the creation and modification of design specification rules. We demonstrate how biological designs are rendered on the DeviceEditor canvas, and we present effective visualizations of genetic component ordering and combinatorial variations within complex designs.</p> <p>Conclusions</p> <p>DeviceEditor liberates researchers from DNA base-pair manipulation, and enables users to create successful prototypes using standardized, functional, and visual abstractions. Open and documented software interfaces support further integration of DeviceEditor with other bioCAD tools and software platforms. DeviceEditor saves researcher time and institutional resources through correct-by-construction design, the automation of tedious tasks, design reuse, and the minimization of DNA assembly costs.</p

    Extracellular ATP released by osteoblasts is a key local inhibitor of bone mineralisation

    Get PDF
    Previous studies have shown that exogenous ATP (>1”M) prevents bone formation in vitro by blocking mineralisation of the collagenous matrix. This effect is thought to be mediated via both P2 receptor-dependent pathways and a receptor-independent mechanism (hydrolysis of ATP to produce the mineralisation inhibitor pyrophosphate, PPi). Osteoblasts are also known to release ATP constitutively. To determine whether this endogenous ATP might exert significant biological effects, bone-forming primary rat osteoblasts were cultured with 0.5-2.5U/ml apyrase (which sequentially hydrolyses ATP to ADP to AMP + 2Pi). Addition of 0.5U/ml apyrase to osteoblast culture medium degraded extracellular ATP to <1% of control levels within 2 minutes; continuous exposure to apyrase maintained this inhibition for up to 14 days. Apyrase treatment for the first 72 hours of culture caused small decreases (≀25%) in osteoblast number, suggesting a role for endogenous ATP in stimulating cell proliferation. Continuous apyrase treatment for 14 days (≄0.5U/ml) increased mineralisation of bone nodules by up to 3-fold. Increases in bone mineralisation were also seen when osteoblasts were cultured with the ATP release inhibitors, NEM and brefeldin A, as well as with P2X1 and P2X7 receptor antagonists. Apyrase decreased alkaline phosphatase (TNAP) activity by up to 60%, whilst increasing the activity of the PPi-generating ecto-nucleotide pyrophosphatase/phosphodiesterases (NPPs) up to 2.7-fold. Both collagen production and adipocyte formation were unaffected. These data suggest that nucleotides released by osteoblasts in bone could act locally, via multiple mechanisms, to limit mineralisation

    Angiotensin II for the Treatment of Vasodilatory Shock

    Get PDF
    BACKGROUND Vasodilatory shock that does not respond to high-dose vasopressors is associated with high mortality. We investigated the effectiveness of angiotensin II for the treatment of patients with this condition. METHODS We randomly assigned patients with vasodilatory shock who were receiving more than 0.2 mu g of norepinephrine per kilogram of body weight per minute or the equivalent dose of another vasopressor to receive infusions of either angiotensin II or placebo. The primary end point was a response with respect to mean arterial pressure at hour 3 after the start of infusion, with response defined as an increase from baseline of at least 10 mm Hg or an increase to at least 75 mm Hg, without an increase in the dose of background vasopressors. RESULTS A total of 344 patients were assigned to one of the two regimens; 321 received a study intervention (163 received angiotensin II, and 158 received placebo) and were included in the analysis. The primary end point was reached by more patients in the angiotensin II group (114 of 163 patients, 69.9%) than in the placebo group (37 of 158 patients, 23.4%) (odds ratio, 7.95; 95% confidence interval [CI], 4.76 to 13.3; P<0.001). At 48 hours, the mean improvement in the cardiovascular Sequential Organ Failure Assessment (SOFA) score (scores range from 0 to 4, with higher scores indicating more severe dysfunction) was greater in the angiotensin II group than in the placebo group (-1.75 vs. -1.28, P = 0.01). Serious adverse events were reported in 60.7% of the patients in the angiotensin II group and in 67.1% in the placebo group. Death by day 28 occurred in 75 of 163 patients (46%) in the angiotensin II group and in 85 of 158 patients (54%) in the placebo group (hazard ratio, 0.78; 95% CI, 0.57 to 1.07; P = 0.12). CONCLUSIONS Angiotensin II effectively increased blood pressure in patients with vasodilatory shock that did not respond to high doses of conventional vasopressors. (Funded by La Jolla Pharmaceutical Company; ATHOS-3 ClinicalTrials.gov number, NCT02338843.)Peer reviewe

    Synthetic Biology Open Language (SBOL) Version 1.1.0

    Get PDF
    In this BioBricks Foundation Request for Comments (BBF RFC), we specify the Synthetic Biology Open Language (SBOL) Version 1.1.0 to enable the electronic exchange of information describing DNA components used in synthetic biology. We define: 1. the vocabulary, a set of preferred terms and 2. the core data model, a common computational representation

    A double-blind, randomized, placebo-controlled trial of prostaglandin E 1 in liver transplantation

    Full text link
    A double-blind placebo-controlled trial of intravenous prostaglandin PGE 1 (40 Μg/h) was conducted in adult orthotopic liver transplant recipients. Infusion was started intraoperatively and continued for up to 21 days. Patients were followed up for 180 days postoperatively. Among 172 patients eligible for treatment in the study, 160 could be evaluated (78 PGE 1 ; 82 placebo). Patient and graft survival were similar (PGE 1 : 16 deaths, 9 retransplantations [7 survivors]; controls: 15 deaths, 6 retransplantations [3 survivors]). In patients with surviving grafts, however, PGE 1 administration resulted in a 23% shorter mean duration of hospitalization following transplantation (PGE 1 : 24.4 days; controls: 31.8 days; P = .02) and 40% shorter length of time postoperatively in the intensive care unit (PGE 1 : 8.2 days; controls 13.7 days; P = .05). Reduced needs for renal support ( P = .03) or surgical intervention other than retransplantation ( P = .02) were also noted with PGE 1 use. Further, PGE 1 administration resulted in a trend toward improved survival rates in patients with mild renal impairment (preoperative serum creatinine 1.5 mg percent or greater; P = .08). Neither the incidence of acute cellular rejection nor of primary nonfunction was significantly different in the two groups. Phlebitis was the only complication that was more common during PGE 1 administration, (PGE 1 : 9; controls: 4). These results suggest that PGE 1 use in hepatic allograft recipients reduces morbidity and may result in sizable cost reductions. (H EPATOLOGY 1995;21:366–372.)Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/38409/1/1840210216_ftp.pd

    Life-Course Genome-wide Association Study Meta-analysis of Total Body BMD and Assessment of Age-Specific Effects.

    Get PDF
    Bone mineral density (BMD) assessed by DXA is used to evaluate bone health. In children, total body (TB) measurements are commonly used; in older individuals, BMD at the lumbar spine (LS) and femoral neck (FN) is used to diagnose osteoporosis. To date, genetic variants in more than 60 loci have been identified as associated with BMD. To investigate the genetic determinants of TB-BMD variation along the life course and test for age-specific effects, we performed a meta-analysis of 30 genome-wide association studies (GWASs) of TB-BMD including 66,628 individuals overall and divided across five age strata, each spanning 15 years. We identified variants associated with TB-BMD at 80 loci, of which 36 have not been previously identified; overall, they explain approximately 10% of the TB-BMD variance when combining all age groups and influence the risk of fracture. Pathway and enrichment analysis of the association signals showed clustering within gene sets implicated in the regulation of cell growth and SMAD proteins, overexpressed in the musculoskeletal system, and enriched in enhancer and promoter regions. These findings reveal TB-BMD as a relevant trait for genetic studies of osteoporosis, enabling the identification of variants and pathways influencing different bone compartments. Only variants in ESR1 and close proximity to RANKL showed a clear effect dependency on age. This most likely indicates that the majority of genetic variants identified influence BMD early in life and that their effect can be captured throughout the life course
    • 

    corecore