293 research outputs found
Transfer of molecular recognition information from DNA nanostructures to gold nanoparticles
DNA nanotechnology offers unparalleled precision and programmability for the bottom-up organization of materials. This approach relies on pre-assembling a DNA scaffold, typically containing hundreds of different strands, and using it to position functional components. A particularly attractive strategy is to employ DNA nanostructures not as permanent
scaffolds, but as transient, reusable templates to transfer essential information to other materials. To our knowledge, this approach, akin to top-down lithography, has not been examined. Here we report a molecular printing strategy that chemically transfers a discrete pattern of DNA strands from a three-dimensional DNA structure to a gold nanoparticle.
We show that the particles inherit the DNA sequence configuration encoded in the parent template with high fidelity. This provides control over the number of DNA strands and their relative placement, directionality and sequence asymmetry. Importantly, the nanoparticles produced exhibit the site-specific addressability of DNA nanostructures, and are promising components for energy, information and biomedical applications
Women’s responses to changes in U.S. preventive task force’s mammography screening guidelines: results of focus groups with ethnically diverse women
Background: The 2009 U.S. Preventive Services Task Force (USPSTF) changed mammography guidelines to recommend routine biennial screening starting at age 50. This study describes women’s awareness of, attitudes toward, and intention to comply with these new guidelines. Methods: Women ages 40–50 years old were recruited from the Boston area to participate in focus groups (k = 8; n = 77). Groups were segmented by race/ethnicity (Caucasian = 39%; African American = 35%; Latina = 26%), audio-taped, and transcribed. Thematic content analysis was used. Results: Participants were largely unaware of the revised guidelines and suspicious that it was a cost-savings measure by insurers and/or providers. Most did not intend to comply with the change, viewing screening as obligatory. Few felt prepared to participate in shared decision-making or advocate for their preferences with respect to screening. Conclusions: Communication about the rationale for mammography guideline changes has left many women unconvinced about potential disadvantages or limitations of screening. Since further guideline changes are likely to occur with advances in technology and science, it is important to help women become informed consumers of health information and active participants in shared decision-making with providers. Additional research is needed to determine the impact of the USPSTF change on women’s screening behaviors and on breast cancer outcomes
Genome-wide analysis of Sphingomonas wittichii RW1 behaviour during inoculation and growth in contaminated sand.
The efficacy of inoculation of single pure bacterial cultures into complex microbiomes, for example, in order to achieve increased pollutant degradation rates in contaminated material (that is, bioaugmentation), has been frustrated by insufficient knowledge on the behaviour of the inoculated bacteria under the specific abiotic and biotic boundary conditions. Here we present a comprehensive analysis of genome-wide gene expression of the bacterium Sphingomonas wittichii RW1 in contaminated non-sterile sand, compared with regular suspended batch growth in liquid culture. RW1 is a well-known bacterium capable of mineralizing dibenzodioxins and dibenzofurans. We tested the reactions of the cells both during the immediate transition phase from liquid culture to sand with or without dibenzofuran, as well as during growth and stationary phase in sand. Cells during transition show stationary phase characteristics, evidence for stress and for nutrient scavenging, and adjust their primary metabolism if they were not precultured on the same contaminant as found in the soil. Cells growing and surviving in sand degrade dibenzofuran but display a very different transcriptome signature as in liquid or in liquid culture exposed to chemicals inducing drought stress, and we obtain evidence for numerous 'soil-specific' expressed genes. Studies focusing on inoculation efficacy should test behaviour under conditions as closely as possible mimicking the intended microbiome conditions
The development and pilot testing of a rapid assessment tool to improve local public health system capacity in Australia
<p>Abstract</p> <p>Background</p> <p>To operate effectively the public health system requires infrastructure and the capacity to act. Public health's ability to attract funding for infrastructure and capacity development would be enhanced if it was able to demonstrate what level of capacity was required to ensure a high performing system. Australia's public health activities are undertaken within a complex organizational framework that involves three levels of government and a diverse range of other organizations. The question of appropriate levels of infrastructure and capacity is critical at each level. Comparatively little is known about infrastructure and capacity at the local level.</p> <p>Methods</p> <p>In-depth interviews were conducted with senior managers in two Australian states with different frameworks for health administration. They were asked to reflect on the critical components of infrastructure and capacity required at the local level. The interviews were analyzed to identify the major themes. Workshops with public health experts explored this data further. The information generated was used to develop a tool, designed to be used by groups of organizations within discrete geographical locations to assess local public health capacity.</p> <p>Results</p> <p>Local actors in these two different systems pointed to similar areas for inclusion for the development of an instrument to map public health capacity at the local level. The tool asks respondents to consider resources, programs and the cultural environment within their organization. It also asks about the policy environment - recognizing that the broader environment within which organizations operate impacts on their capacity to act. Pilot testing of the tool pointed to some of the challenges involved in such an exercise, particularly if the tool were to be adopted as policy.</p> <p>Conclusion</p> <p>This research indicates that it is possible to develop a tool for the systematic assessment of public health capacity at the local level. Piloting the tool revealed some concerns amongst participants, particularly about how the tool would be used. However there was also recognition that the areas covered by the tool were those considered relevant.</p
Recommended from our members
Mass Calibration of Optically Selected des Clusters Using a Measurement of CMB-cluster Lensing with SPTpol Data
We use cosmic microwave background (CMB) temperature maps from the 500 deg 2 SPTpol survey to measure the stacked lensing convergence of galaxy clusters from the Dark Energy Survey (DES) Year-3 redMaPPer (RM) cluster catalog. The lensing signal is extracted through a modified quadratic estimator designed to be unbiased by the thermal Sunyaev-Zel'dovich (tSZ) effect. The modified estimator uses a tSZ-free map, constructed from the SPTpol 95 and 150 GHz data sets, to estimate the background CMB gradient. For lensing reconstruction, we employ two versions of the RM catalog: a flux-limited sample containing 4003 clusters and a volume-limited sample with 1741 clusters. We detect lensing at a significance of 8.7σ(6.7σ) with the flux (volume)-limited sample. By modeling the reconstructed convergence using the Navarro-Frenk-White profile, we find the average lensing masses to be M 200m = (1.62 -0.25+0.32 [stat] ± 0.04 [sys.]) and (1.28 -0.18+0.14 [stat] ± 0.03[sys.])× 10 14 M ⊙ for the volume- and flux-limited samples, respectively. The systematic error budget is much smaller than the statistical uncertainty and is dominated by the uncertainties in the RM cluster centroids. We use the volume-limited sample to calibrate the normalization of the mass-richness scaling relation, and find a result consistent with the galaxy weak-lensing measurements from DES
Recommended from our members
Dark Energy Survey year 1 results: Joint analysis of galaxy clustering, galaxy lensing, and CMB lensing two-point functions
We perform a joint analysis of the auto and cross-correlations between three
cosmic fields: the galaxy density field, the galaxy weak lensing shear field,
and the cosmic microwave background (CMB) weak lensing convergence field. These
three fields are measured using roughly 1300 sq. deg. of overlapping optical
imaging data from first year observations of the Dark Energy Survey and
millimeter-wave observations of the CMB from both the South Pole Telescope
Sunyaev-Zel'dovich survey and Planck. We present cosmological constraints from
the joint analysis of the two-point correlation functions between galaxy
density and galaxy shear with CMB lensing. We test for consistency between
these measurements and the DES-only two-point function measurements, finding no
evidence for inconsistency in the context of flat CDM cosmological
models. Performing a joint analysis of five of the possible correlation
functions between these fields (excluding only the CMB lensing autospectrum)
yields and . We test
for consistency between these five correlation function measurements and the
Planck-only measurement of the CMB lensing autospectrum, again finding no
evidence for inconsistency in the context of flat CDM models.
Combining constraints from all six two-point functions yields
and .
These results provide a powerful test and confirmation of the results from the
first year DES joint-probes analysis
Recommended from our members
Dark Energy Survey Year 1 Results: Cross-correlation between Dark Energy Survey Y1 galaxy weak lensing and South Pole Telescope +Planck CMB weak lensing
We cross-correlate galaxy weak lensing measurements from the Dark Energy Survey (DES) year-one data with a cosmic microwave background (CMB) weak lensing map derived from South Pole Telescope (SPT) and Planck data, with an effective overlapping area of 1289 deg2. With the combined measurements from four source galaxy redshift bins, we obtain a detection significance of 5.8σ. We fit the amplitude of the correlation functions while fixing the cosmological parameters to a fiducial ΛCDM model, finding A=0.99±0.17. We additionally use the correlation function measurements to constrain shear calibration bias, obtaining constraints that are consistent with previous DES analyses. Finally, when performing a cosmological analysis under the ΛCDM model, we obtain the marginalized constraints of ωm=0.261-0.051+0.070 and S8σ8ωm/0.3=0.660-0.100+0.085. These measurements are used in a companion work that presents cosmological constraints from the joint analysis of two-point functions among galaxies, galaxy shears, and CMB lensing using DES, SPT, and Planck data
Recommended from our members
Cosmological lensing ratios with des Y1, SPT, and Planck
Correlations between tracers of the matter density field and gravitational lensing are sensitive to the evolution of the matter power spectrum and the expansion rate across cosmic time. Appropriately defined ratios of such correlation functions, on the other hand, depend only on the angular diameter distances to the tracer objects and to the gravitational lensing source planes. Because of their simple cosmological dependence, such ratios can exploit available signal-to-noise ratio down to small angular scales, even where directly modelling the correlation functions is difficult. We present a measurement of lensing ratios using galaxy position and lensing data from the Dark Energy Survey, and CMB lensing data from the South Pole Telescope and Planck, obtaining the highest precision lensing ratio measurements to date. Relative to the concordance CDM model, we find a best-fitting lensing ratio amplitude of A = 1.1 ± 0.1. We use the ratio measurements to generate cosmological constraints, focusing on the curvature parameter. We demonstrate that photometrically selected galaxies can be used to measure lensing ratios, and argue that future lensing ratio measurements with data from a combination of LSST and Stage-4 CMB experiments can be used to place interesting cosmological constraints, even after considering the systematic uncertainties associated with photometric redshift and galaxy shear estimation
- …