181 research outputs found

    Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib

    Get PDF
    BACKGROUND: Most patients with non-small-cell lung cancer have no response to the tyrosine kinase inhibitor gefitinib, which targets the epidermal growth factor receptor (EGFR). However, about 10 percent of patients have a rapid and often dramatic clinical response. The molecular mechanisms underlying sensitivity to gefitinib are unknown. METHODS: We searched for mutations in the EGFR gene in primary tumors from patients with non-small-cell lung cancer who had a response to gefitinib, those who did not have a response, and those who had not been exposed to gefitinib. The functional consequences of identified mutations were evaluated after the mutant proteins were expressed in cultured cells. RESULTS: Somatic mutations were identified in the tyrosine kinase domain of the EGFR gene in eight of nine patients with gefitinib-responsive lung cancer, as compared with none of the seven patients with no response (P<0.001). Mutations were either small, in-frame deletions or amino acid substitutions clustered around the ATP-binding pocket of the tyrosine kinase domain. Similar mutations were detected in tumors from 2 of 25 patients with primary non-small-cell lung cancer who had not been exposed to gefitinib (8 percent). All mutations were heterozygous, and identical mutations were observed in multiple patients, suggesting an additive specific gain of function. In vitro, EGFR mutants demonstrated enhanced tyrosine kinase activity in response to epidermal growth factor and increased sensitivity to inhibition by gefitinib. CONCLUSIONS: A subgroup of patients with non-small-cell lung cancer have specific mutations in the EGFR gene, which correlate with clinical responsiveness to the tyrosine kinase inhibitor gefitinib. These mutations lead to increased growth factor signaling and confer susceptibility to the inhibitor. Screening for such mutations in lung cancers may identify patients who will have a response to gefitinib

    Receptor Tyrosine Kinase (RTK) Mediated Tyrosine Phosphor-Proteome from Drosophila S2 (ErbB1) Cells Reveals Novel Signaling Networks

    Get PDF
    Protein phosphorylation mediates many critical cellular responses and is essential for many biological functions during development. About one-third of cellular proteins are phosphorylated, representing the phosphor-proteome, and phosphorylation can alter a protein's function, activity, localization and stability. Tyrosine phosphorylation events mediated by aberrant activation of Receptor Tyrosine Kinase (RTK) pathways have been proven to be involved in the development of several diseases including cancer. To understand the systems biology of RTK activation, we have developed a phosphor-proteome focused on tyrosine phosphorylation events under insulin and EGF signaling pathways using the PhosphoScan® technique coupled with high-throughput mass spectrometry analysis. Comparative proteomic analyses of all these tyrosine phosphorylation events revealed that around 70% of these pY events are conserved in human orthologs and paralogs. A careful analysis of published in vivo tyrosine phosphorylation events from literature and patents revealed that around 38% of pY events from Drosophila proteins conserved on 185 human proteins are confirmed in vivo tyrosine phosphorylation events. Hence the data are validated partially based on available reports, and the credibility of the remaining 62% of novel conserved sites that are unpublished so far is very high but requires further follow-up studies. The novel pY events found in this study that are conserved on human proteins could potentially lead to the discovery of drug targets and biomarkers for the detection of various cancers and neurodegenerative diseases

    TBCRC 019: A phase II trial of nanoparticle albumin-bound paclitaxel with or without the anti-death receptor 5 monoclonal antibody tigatuzumab in patients with triple negative breast cancer

    Get PDF
    Purpose: Tigatuzumab (TIG), an agonistic anti-DR5 antibody, triggers apoptosis in DR5+ human tumor cells without crosslinking. TIG has strong in vitro/in vivo activity against basal-like breast cancer cells enhanced by chemotherapy agents. This study evaluates activity of TIG and chemotherapy in patients with metastatic triple-negative breast cancer (TNBC). Experimental Design: Randomized 2:1 phase II trial of albumin-bound paclitaxel (nab-PAC) ± TIG in patients with TNBC stratified by prior chemotherapy. Patients received nab-PAC weekly × 3 ± TIG every other week, every 28 days. Primary objective was within-arm objective response rate (ORR). Secondary objectives were safety, progression-free survival (PFS), clinical benefit, and TIG immunogenicity. Metastatic research biopsies were required. Results: Among 64 patients (60 treated; TIG/nab-PAC n = 39 and nab-PAC n = 21), there were 3 complete remissions (CR), 8 partial remissions (PR; 1 almost CR), 11 stable diseases (SD), and 17 progressive diseases (PD) in the TIG/nab-PAC arm (ORR, 28%), and no CRs, 8 PRs, 4 SDs, and 9 PDs in the nab-PAC arm (ORR, 38%). There was a numerical increase in CRs and several patients had prolonged PFS (1,025+, 781, 672, 460, 334) in the TIG/nab-PAC arm. Grade 3 toxicities were 28% and 29%, respectively, with no grade 4–5. Exploratory analysis suggests an association of ROCK1 gene pathway activation with efficacy in the TIG/nab-PAC arm. Conclusions: ORR and PFS were similar in both. Preclinical activity of TIG in basal-like breast cancer and prolonged PFS in few patients in the combination arm support further investigation of anti-DR5 agents. ROCK pathway activation merits further evaluation

    Cardiac and vascular structure and function parameters do not improve with alternate nightly home hemodialysis: An interventional cohort study

    Get PDF
    Background: Nightly extended hours hemodialysis may improve left ventricular hypertrophy and function and endothelial function but presents problems of sustainability and increased cost. The effect of alternate nightly home hemodialysis (NHD) on cardiovascular structure and function is not known

    Phase I and pharmacokinetic study of irinotecan in combination with R115777, a farnesyl protein transferase inhibitor

    Get PDF
    The aims of this study were to determine the maximum-tolerated dose (MTD), toxicity profile, and pharmacokinetics of irinotecan given with oral R115777 (tipifarnib), a farnesyl protein transferase inhibitor. Patients were treated with escalating doses of irinotecan with interval-modulated dosing of R115777 (continuously or on days 1-14, and repeated every 21 days). In total, 35 patients were entered onto the trial for a median duration of treatment of 43 days (range, 5-224 days). Neutropenia and thrombocytopenia were the dose-limiting toxicities; other side effects were mostly mild. The MTD was established at R115777 300 mg b.i.d. for 14 consecutive days with irinotecan 350 mg m-2 given every 3 weeks starting on day 1. Three patients had a partial response and 14 had stable disease. In the continuous schedule, the area under the curves of irinotecan and its active metabolite SN-38 were 20.0% (P = 0.004) and 38.0% (P < 0.001) increased by R115777, respectively. Intermittent dosing of R115777 at a dose of 300 mg b.i.d. for 14 days every 3 weeks is the recommended dose of R115777 in combination with the recommended single-agent irinotecan dose of 350 mg m-2

    Heterodimerization of Glycosylated Insulin-Like Growth Factor-1 Receptors and Insulin Receptors in Cancer Cells Sensitive to Anti-IGF1R Antibody

    Get PDF
    Identification of predictive biomarkers is essential for the successful development of targeted therapy. Insulin-like growth factor 1 receptor (IGF1R) has been examined as a potential therapeutic target for various cancers. However, recent clinical trials showed that anti-IGF1R antibody and chemotherapy are not effective for treating lung cancer.In order to define biomarkers for predicting successful IGF1R targeted therapy, we evaluated the anti-proliferation effect of figitumumab (CP-751,871), a humanized anti-IGF1R antibody, against nine gastric and eight hepatocellular cancer cell lines. Out of 17 cancer cell lines, figitumumab effectively inhibited the growth of three cell lines (SNU719, HepG2, and SNU368), decreased p-AKT and p-STAT3 levels, and induced G 1 arrest in a dose-dependent manner. Interestingly, these cells showed co-overexpression and altered mobility of the IGF1R and insulin receptor (IR). Immunoprecipitaion (IP) assays and ELISA confirmed the presence of IGF1R/IR heterodimeric receptors in figitumumab-sensitive cells. Treatment with figitumumab led to the dissociation of IGF1-dependent heterodimeric receptors and inhibited tumor growth with decreased levels of heterodimeric receptors in a mouse xenograft model. We next found that both IGF1R and IR were N-linked glyosylated in figitumumab-sensitive cells. In particular, mass spectrometry showed that IGF1R had N-linked glycans at N913 in three figitumumab-sensitive cell lines. We observed that an absence of N-linked glycosylation at N913 led to a lack of membranous localization of IGF1R and figitumumab insensitivity.The data suggest that the level of N-linked glycosylated IGF1R/IR heterodimeric receptor is highly associated with sensitivity to anti-IGF1R antibody in cancer cells

    A novel AKT3 mutation in melanoma tumours and cell lines

    Get PDF
    Recently, a rare activating mutation of AKT1 (E17K) has been reported in breast, ovarian, and colorectal cancers. However, analogous activating mutations in AKT2 or AKT3 have not been identified in any cancer lineage. To determine the prevalence of AKT E17K mutations in melanoma, the most aggressive form of skin cancer, we analysed 137 human melanoma specimens and 65 human melanoma cell lines for the previously described activating mutation of AKT1, and for analogous mutations in AKT2 and AKT3. We identified a single AKT1 E17K mutation. Remarkably, a previously unidentified AKT3 E17K mutation was detected in two melanomas (from one patient) as well as two cell lines. The AKT3 E17K mutation results in activation of AKT when expressed in human melanoma cells. This represents the first report of AKT mutations in melanoma, and the initial identification of an AKT3 mutation in any human cancer lineage. We have also identified the first known human cell lines with naturally occurring AKT E17K mutations

    Progesterone after previous preterm birth for prevention of neonatal respiratory distress syndrome (PROGRESS): a randomised controlled trial

    Get PDF
    Background: Neonatal respiratory distress syndrome, as a consequence of preterm birth, is a major cause of early mortality and morbidity during infancy and childhood. Survivors of preterm birth continue to remain at considerable risk of both chronic lung disease and long-term neurological handicap. Progesterone is involved in the maintenance of uterine quiescence through modulation of the calcium-calmodulin-myosin-light-chain-kinase system in smooth muscle cells. The withdrawal of progesterone, either actual or functional is thought to be an antecedent to the onset of labour. While there have been recent reports of progesterone supplementation for women at risk of preterm birth which show promise in this intervention, there is currently insufficient data on clinically important outcomes for both women and infants to enable informed clinical decision-making. The aims of this randomised, double blind, placebo controlled trial are to assess whether the use of vaginal progesterone pessaries in women with a history of previous spontaneous preterm birth will reduce the risk and severity of respiratory distress syndrome, so improving their infant's health, without increasing maternal risks. Methods Design: Multicentred randomised, double blind, placebo-controlled trial. Inclusion Criteria: pregnant women with a live fetus, and a history of prior preterm birth at less than 37 weeks gestation and greater than 20 weeks gestation in the immediately preceding pregnancy, where onset of labour occurred spontaneously, or in association with cervical incompetence, or following preterm prelabour ruptured membranes. Trial Entry & Randomisation: After obtaining written informed consent, eligible women will be randomised between 18 and 23+6 weeks gestation using a central telephone randomisation service. The randomisation schedule prepared by non clinical research staff will use balanced variable blocks, with stratification according to plurality of the pregnancy and centre where planned to give birth. Eligible women will be randomised to either vaginal progesterone or vaginal placebo. Study Medication & Treatment Schedules: Treatment packs will appear identical. Woman, caregivers and research staff will be blinded to treatment allocation. Primary Study Outcome: Neonatal Respiratory Distress Syndrome (defined by incidence and severity). Sample Size: of 984 women to show a 40% reduction in respiratory distress syndrome from 15% to 9% (p = 0.05, 80% power). Discussion: This is a protocol for a randomised trial.Jodie M. Dodd, Caroline A. Crowther, Andrew J. McPhee, Vicki Flenady, and Jeffrey S. Robinso

    Accurate molecular classification of cancer using simple rules

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One intractable problem with using microarray data analysis for cancer classification is how to reduce the extremely high-dimensionality gene feature data to remove the effects of noise. Feature selection is often used to address this problem by selecting informative genes from among thousands or tens of thousands of genes. However, most of the existing methods of microarray-based cancer classification utilize too many genes to achieve accurate classification, which often hampers the interpretability of the models. For a better understanding of the classification results, it is desirable to develop simpler rule-based models with as few marker genes as possible.</p> <p>Methods</p> <p>We screened a small number of informative single genes and gene pairs on the basis of their depended degrees proposed in rough sets. Applying the decision rules induced by the selected genes or gene pairs, we constructed cancer classifiers. We tested the efficacy of the classifiers by leave-one-out cross-validation (LOOCV) of training sets and classification of independent test sets.</p> <p>Results</p> <p>We applied our methods to five cancerous gene expression datasets: leukemia (acute lymphoblastic leukemia [ALL] vs. acute myeloid leukemia [AML]), lung cancer, prostate cancer, breast cancer, and leukemia (ALL vs. mixed-lineage leukemia [MLL] vs. AML). Accurate classification outcomes were obtained by utilizing just one or two genes. Some genes that correlated closely with the pathogenesis of relevant cancers were identified. In terms of both classification performance and algorithm simplicity, our approach outperformed or at least matched existing methods.</p> <p>Conclusion</p> <p>In cancerous gene expression datasets, a small number of genes, even one or two if selected correctly, is capable of achieving an ideal cancer classification effect. This finding also means that very simple rules may perform well for cancerous class prediction.</p
    corecore