124 research outputs found

    X-ray Periodicity in AGN

    Full text link
    Significant (marginal) detections of periodic signals have been recently reported in 3 (4) Active Galactic Nuclei. Three of the detections were obtained from long EUVE light curves of moderate-luminosity Seyfert galaxies; the fourth was discovered in Chandra data from the low-luminosity Seyfert 1 galaxy NGC 4395. When compared with Cyg X-1, I find that the period is related to the luminosity as P∝L2/3P\propto L^{2/3} rather than the expected one-to-one relationship. This result might be explained if the QPO is associated with the inner edge of the optically thick accretion disk, and the inner edge radius depends on the source luminosity (or black hole mass). A discussion of uncertainties in the period detection methodology is also discussed.Comment: To appear in From X-ray Binaries to Quasars: Black Hole Accretion on All Mass Scales, eds. T. J. Maccarone, R. P. Fender, and L. C. Ho (Dordrecht: Kluwer

    Atomic X-ray Spectroscopy of Accreting Black Holes

    Full text link
    Current astrophysical research suggests that the most persistently luminous objects in the Universe are powered by the flow of matter through accretion disks onto black holes. Accretion disk systems are observed to emit copious radiation across the electromagnetic spectrum, each energy band providing access to rather distinct regimes of physical conditions and geometric scale. X-ray emission probes the innermost regions of the accretion disk, where relativistic effects prevail. While this has been known for decades, it also has been acknowledged that inferring physical conditions in the relativistic regime from the behavior of the X-ray continuum is problematic and not satisfactorily constraining. With the discovery in the 1990s of iron X-ray lines bearing signatures of relativistic distortion came the hope that such emission would more firmly constrain models of disk accretion near black holes, as well as provide observational criteria by which to test general relativity in the strong field limit. Here we provide an introduction to this phenomenon. While the presentation is intended to be primarily tutorial in nature, we aim also to acquaint the reader with trends in current research. To achieve these ends, we present the basic applications of general relativity that pertain to X-ray spectroscopic observations of black hole accretion disk systems, focusing on the Schwarzschild and Kerr solutions to the Einstein field equations. To this we add treatments of the fundamental concepts associated with the theoretical and modeling aspects of accretion disks, as well as relevant topics from observational and theoretical X-ray spectroscopy.Comment: 63 pages, 21 figures, Einstein Centennial Review Article, Canadian Journal of Physics, in pres

    Weighing black holes with warm absorbers

    Get PDF
    We present a new technique for determining an upper limit for the mass of the black hole in active galactic nuclei showing warm absorption features. The method relies on the balance of radiative and gravitational forces acting on outflowing warm absorber clouds. It has been applied to 6 objects: five Seyfert 1 galaxies: IC 4329a, MCG-6-30-15, NGC 3516, NGC 4051 and NGC 5548; and one radio-quiet quasar: MR 2251-178. We discuss our result in comparison with other methods. The procedure could also be applied to any other radiatively driven optically thin outflow in which the spectral band covering the major absorption is directly observed.Comment: 13 pages, 6 figures, 7 tables. MNRAS accepte

    Mass Spectra of Supersymmetric Yang-Mills Theories in 1+1 Dimensions

    Get PDF
    Physical mass spectra of supersymmetric Yang-Mills theories in 1+1 dimensions are evaluated in the light-cone gauge with a compact spatial dimension. The supercharges are constructed and the infrared regularization is unambiguously prescribed for supercharges, instead of the light-cone Hamiltonian. This provides a manifestly supersymmetric infrared regularization for the discretized light-cone approach. By an exact diagonalization of the supercharge matrix between up to several hundred color singlet bound states, we find a rapidly increasing density of states as mass increases.Comment: LaTeX file, 32 page, 7 eps figure

    Active Galactic Nuclei at the Crossroads of Astrophysics

    Get PDF
    Over the last five decades, AGN studies have produced a number of spectacular examples of synergies and multifaceted approaches in astrophysics. The field of AGN research now spans the entire spectral range and covers more than twelve orders of magnitude in the spatial and temporal domains. The next generation of astrophysical facilities will open up new possibilities for AGN studies, especially in the areas of high-resolution and high-fidelity imaging and spectroscopy of nuclear regions in the X-ray, optical, and radio bands. These studies will address in detail a number of critical issues in AGN research such as processes in the immediate vicinity of supermassive black holes, physical conditions of broad-line and narrow-line regions, formation and evolution of accretion disks and relativistic outflows, and the connection between nuclear activity and galaxy evolution.Comment: 16 pages, 5 figures; review contribution; "Exploring the Cosmic Frontier: Astrophysical Instruments for the 21st Century", ESO Astrophysical Symposia Serie

    Human surface anatomy terminology for dermatology: a Delphi consensus from the International Skin Imaging Collaboration

    Full text link
    BackgroundThere is no internationally vetted set of anatomic terms to describe human surface anatomy.ObjectiveTo establish expert consensus on a standardized set of terms that describe clinically relevant human surface anatomy.MethodsWe conducted a Delphi consensus on surface anatomy terminology between July 2017 and July 2019. The initial survey included 385 anatomic terms, organized in seven levels of hierarchy. If agreement exceeded the 75% established threshold, the term was considered - accepted- and included in the final list. Terms added by the participants were passed on to the next round of consensus. Terms with <75% agreement were included in subsequent surveys along with alternative terms proposed by participants until agreement was reached on all terms.ResultsThe Delphi included 21 participants. We found consensus (- ÂĽ75% agreement) on 361/385 (93.8%) terms and eliminated one term in the first round. Of 49 new terms suggested by participants, 45 were added via consensus. To adjust for a recently published International Classification of Diseases- Surface Topography list of terms, a third survey including 111 discrepant terms was sent to participants. Finally, a total of 513 terms reached agreement via the Delphi method.ConclusionsWe have established a set of 513 clinically relevant terms for denoting human surface anatomy, towards the use of standardized terminology in dermatologic documentation.Linked Commentary: R.J.G. Chalmers. J Eur Acad Dermatol Venereol 2020; 34: 2456- 2457. https://doi.org/10.1111/jdv.16978.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/163915/1/jdv16855_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163915/2/jdv16855-sup-0001-FigS1-S3.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/163915/3/jdv16855.pd

    2022 Upgrade and Improved Low Frequency Camera Sensitivity for CMB Observation at the South Pole

    Full text link
    Constraining the Galactic foregrounds with multi-frequency Cosmic Microwave Background (CMB) observations is an essential step towards ultimately reaching the sensitivity to measure primordial gravitational waves (PGWs), the sign of inflation after the Big-Bang that would be imprinted on the CMB. The BICEP Array telescope is a set of multi-frequency cameras designed to constrain the energy scale of inflation through CMB B-mode searches while also controlling the polarized galactic foregrounds. The lowest frequency BICEP Array receiver (BA1) has been observing from the South Pole since 2020 and provides 30 GHz and 40 GHz data to characterize the Galactic synchrotron in our CMB maps. In this paper, we present the design of the BA1 detectors and the full optical characterization of the camera including the on-sky performance at the South Pole. The paper also introduces the design challenges during the first observing season including the effect of out-of-band photons on detectors performance. It also describes the tests done to diagnose that effect and the new upgrade to minimize these photons, as well as installing more dichroic detectors during the 2022 deployment season to improve the BA1 sensitivity. We finally report background noise measurements of the detectors with the goal of having photon noise dominated detectors in both optical channels. BA1 achieves an improvement in mapping speed compared to the previous deployment season.Comment: Proceedings of SPIE Astronomical Telescopes + Instrumentation 2022 (AS22

    Track D Social Science, Human Rights and Political Science

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138414/1/jia218442.pd
    • …
    corecore