1,948 research outputs found

    Alien Registration- Halloran, Agatha A. (Millinocket, Penobscot County)

    Get PDF
    https://digitalmaine.com/alien_docs/7148/thumbnail.jp

    Predictive Modeling of Cholera Outbreaks in Bangladesh

    Full text link
    Despite seasonal cholera outbreaks in Bangladesh, little is known about the relationship between environmental conditions and cholera cases. We seek to develop a predictive model for cholera outbreaks in Bangladesh based on environmental predictors. To do this, we estimate the contribution of environmental variables, such as water depth and water temperature, to cholera outbreaks in the context of a disease transmission model. We implement a method which simultaneously accounts for disease dynamics and environmental variables in a Susceptible-Infected-Recovered-Susceptible (SIRS) model. The entire system is treated as a continuous-time hidden Markov model, where the hidden Markov states are the numbers of people who are susceptible, infected, or recovered at each time point, and the observed states are the numbers of cholera cases reported. We use a Bayesian framework to fit this hidden SIRS model, implementing particle Markov chain Monte Carlo methods to sample from the posterior distribution of the environmental and transmission parameters given the observed data. We test this method using both simulation and data from Mathbaria, Bangladesh. Parameter estimates are used to make short-term predictions that capture the formation and decline of epidemic peaks. We demonstrate that our model can successfully predict an increase in the number of infected individuals in the population weeks before the observed number of cholera cases increases, which could allow for early notification of an epidemic and timely allocation of resources.Comment: 43 pages, including appendices, 5 figures, 1 table in the main tex

    Using a hypothetical scenario to assess public preferences for colorectal surveillance following screening-detected, intermediate-risk adenomas: annual home-based stool test vs. triennial colonoscopy

    Get PDF
    Background To assess public preferences for colorectal cancer (CRC) surveillance tests for intermediate-risk adenomas, using a hypothetical scenario. Methods Adults aged 45–54 years without CRC were identified from three General Practices in England (two in Cumbria, one in London). A postal survey was carried out during a separate study on preferences for different first-line CRC screening modalities (non- or full-laxative computed tomographic colonography, flexible sigmoidoscopy, or colonoscopy). Individuals were allocated at random to receive a pack containing information on one first-line test, and a paragraph describing CRC surveillance recommendations for people who are diagnosed with intermediate-risk adenomas during screening. All participants received a description of two surveillance options: annual single-sample, home-based stool testing (consistent with Faecal Immunochemical Tests; FIT) or triennial colonoscopy. Invitees were asked to imagine they had been diagnosed with intermediate-risk adenomas, and then complete a questionnaire on their surveillance preferences. Results 22.1 % (686/3,100) questionnaires were returned. 491 (15.8 %) were eligible for analysis. The majority of participants stated a surveillance preference for the stool test over colonoscopy (60.8 % vs 31.0 %; no preference: 8.1 %; no surveillance: 0.2 %). Women were more likely to prefer the stool test than men (66.7 % vs. 53.6 %; p = .011). The primary reason for preferring the stool test was that it would be done more frequently. The main reason to prefer colonoscopy was its superiority at finding polyps. Conclusions A majority of participants stated a preference for a surveillance test resembling FIT over colonoscopy. Future research should test whether this translates to greater adherence in a real surveillance setting

    What is value added?

    Get PDF

    On which timescales do gas transfer velocities control North Atlantic CO2 flux variability?

    Get PDF
    This is the final version of the article. Available from AGU via the DOI in this record.The North Atlantic is an important basin for the global ocean's uptake of anthropogenic and natural carbon dioxide (CO 2 ), but the mechanisms controlling this carbon flux are not fully understood. The air-sea flux of CO 2 , F, is the product of a gas transfer velocity, k, the air-sea CO 2 concentration gradient, ΔpCO 2 , and the temperature- and salinity-dependent solubility coefficient, α. k is difficult to constrain, representing the dominant uncertainty in F on short (instantaneous to interannual) timescales. Previous work shows that in the North Atlantic, ΔpCO 2 and k both contribute significantly to interannual F variability but that k is unimportant for multidecadal variability. On some timescale between interannual and multidecadal, gas transfer velocity variability and its associated uncertainty become negligible. Here we quantify this critical timescale for the first time. Using an ocean model, we determine the importance of k, ΔpCO 2 , and α on a range of timescales. On interannual and shorter timescales, both ΔpCO 2 and k are important controls on F. In contrast, pentadal to multidecadal North Atlantic flux variability is driven almost entirely by ΔpCO 2 ; k contributes less than 25%. Finally, we explore how accurately one can estimate North Atlantic F without a knowledge of nonseasonal k variability, finding it possible for interannual and longer timescales. These findings suggest that continued efforts to better constrain gas transfer velocities are necessary to quantify interannual variability in the North Atlantic carbon sink. However, uncertainty in k variability is unlikely to limit the accuracy of estimates of longer-term flux variability.This work was supported the RAGNARoCC NERC directed research program (NE/K002546/1, NE/K00249X/1, and NE/K002473/1)

    Oxygen diffusion in alpha-Al2O3

    Get PDF
    Oxygen self diffusion coefficients were determined in single crystal alpha-Al2O3 using the gas exchange technique. The samples were semi-infinite slabs cut from five different boules with varying background impurities. The diffusion direction was parallel to the c-axis. The tracer profiles were determined by two techniques, single spectrum proton activation and secondary ion mass spectrometry. The SIMS proved to be a more useful tool. The determined diffusion coefficients, which were insensitive to impurity levels and oxygen partial pressure, could be described by D = .00151 exp (-572kJ/RT) sq m/s. The insensitivities are discussed in terms of point defect clustering. Two independent models are consistent with the findings, the first considers the clusters as immobile point defect traps which buffer changes in the defect chemistry. The second considers clusters to be mobile and oxygen diffusion to be intrinsic behavior, the mechanism for oxygen transport involving neutral clusters of Schottky quintuplets
    corecore