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Key Points: 14 

• Key processes needed to improve projections of the response of ocean carbon storage 15 

to climate change identified 16 

• Three themes are addressed: net primary production, interior respiration, and biological 17 

contributions to alkalinity 18 

• An expert assessment and community survey used to rank processes according to 19 

importance and uncertainty levels 20 
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Abstract: 22 

The ocean is responsible for taking up approximately 25% of anthropogenic CO2 emissions 23 

and stores >50 times more carbon than the atmosphere. Biological processes in the ocean play 24 

a key role, maintaining atmospheric CO2 levels approximately 200 ppm lower than they would 25 

otherwise be. The ocean’s ability to take up and store CO2 is sensitive to climate change, 26 

however the key biological processes that contribute to ocean carbon storage are uncertain, as 27 

are how those processes will respond to, and feedback on, climate change. As a result, 28 

biogeochemical models vary widely in their representation of relevant processes, driving large 29 

uncertainties in the projections of future ocean carbon storage. This review identifies key 30 

biological processes that affect how ocean carbon storage may change in the future in three 31 

thematic areas: biological contributions to alkalinity, net primary production, and interior 32 

respiration. We undertook a review of the existing literature to identify processes with high 33 

importance in influencing the future biologically-mediated storage of carbon in the ocean, and 34 

prioritised processes on the basis of both an expert assessment and a community survey. Highly 35 

ranked processes in both the expert assessment and survey were: for alkalinity – high level 36 

understanding of calcium carbonate production; for primary production – resource limitation 37 

of growth, zooplankton processes and phytoplankton loss processes; for respiration – microbial 38 

solubilisation, particle characteristics and particle type. The analysis presented here is designed 39 

to support future field or laboratory experiments targeting new process understanding, and 40 

modelling efforts aimed at undertaking biogeochemical model development.  41 

 42 

1. Introduction:  43 

Biological processes contribute significantly to oceanic storage of CO2 by maintaining 44 

a lower concentration of carbon in the surface than in the deep ocean. However, how biological 45 

processes will respond to climate change and the subsequent feedbacks to ocean carbon storage 46 

are poorly known. As a consequence, the IPCC Assessment Report 6 Working Group I report 47 

(Canadell et al., 2021) concluded with high confidence that climate change will result in 48 

alterations to the magnitude and efficiency of biological contributions to carbon storage, but 49 

that there is low confidence in the magnitude or even sign of these biological feedbacks. This 50 

level of uncertainty is reflected in the discrepancies between observation and model based 51 

estimates of ocean carbon storage (e.g. Friedlingstein et al., 2022), part of which may be due 52 

to poorly represented biological processes. As the contribution of biological processes to ocean 53 

CO2 uptake and storage is expected to gain greater importance with continued climate change 54 

(Hauck et al., 2015), improving model representation of these processes (which requires 55 



improved observational constraints) is essential. Major knowledge gaps result from the number 56 

and complexity of processes involved in biological carbon storage and a lack of observations 57 

with which they can be constrained. This lack of data limits both the fundamental 58 

understanding of relevant processes, and the development and validation of biogeochemical 59 

models as the data are rarely available on the large spatial and long temporal timescales 60 

required. The availability of robust model parameterisations is thus limited, resulting in a lack 61 

of consensus among climate models on which biological processes should be included (or 62 

excluded), and hence significant uncertainty in the magnitude and sign of biological feedbacks 63 

to climate change. However, even if sufficient data to build a parsimonious and mechanistic 64 

parameterisation of every possible process existed, it is not likely to be feasible to include them 65 

all in coupled climate model experiments due to computational constraints. In the context of 66 

climate modelling, there is therefore a need to prioritise key processes which: a) are significant 67 

contributors to biological carbon storage and/or its climate feedback, b) have the potential (with 68 

appropriate fieldwork, lab experiments or data syntheses) to generate sufficient data to act as 69 

robust model constraints and/or develop new parameterisations suitable for inclusion in Earth 70 

System Models (ESMs), c) are computationally tractable (i.e. the process can be incorporated 71 

in a model without a prohibitive computational cost), and d) are relevant on the centennial, 72 

global scale of IPCC-class climate models.  73 

 74 

Here, we identify major knowledge gaps in relation to biological processes that have 75 

an influence on determining the future biologically-mediated storage of carbon in the ocean. 76 

We focus on 3 ‘Challenges’ that were pre-defined by the BIO-Carbon programme (https://bio-77 

carbon.ac.uk/). Critical areas regarding the role played by biological processes in the ocean 78 

carbon cycle include their contributions to alkalinity, their net production of organic carbon 79 

pools via primary production and how interior respiration modulates the transfer of organic 80 

carbon through the ocean interior. These issues represent areas where there is little to no 81 

consensus in existing ESMs and strong potential for emergent feedbacks in a changing climate, 82 

linking into strategic priorities of the World Climate Research Programme. Below we expand 83 

on the three key challenges in more detail. The framework for assessment detailed here could 84 

equally be applied to other aspects of the marine carbon cycle in the future.  85 

 86 

1.1: Challenge 1 - Biological contributions to alkalinity  87 

Air-sea CO2 exchange enables seawater CO2 concentrations to maintain equilibrium 88 

with atmospheric CO2 concentrations. The alkalinity of seawater is a key chemical determinant 89 

https://bio-carbon.ac.uk/
https://bio-carbon.ac.uk/


of the proportion of the dissolved inorganic carbon (DIC) in seawater that exists as CO2. 90 

Alkalinity is therefore the primary control on how much DIC seawater can hold. A mechanistic 91 

understanding of all of the biogeochemical processes leading to changes in surface alkalinity 92 

is lacking (Middelburg et al., 2020). ESMs therefore simplify and/or ignore potentially relevant 93 

processes, resulting in the failure of models to capture observed surface alkalinity in key CO2 94 

sink regions (Lebehot et al., 2019). This results in a significant overestimation of contemporary 95 

surface ocean CO2 trends in the Atlantic (by 20-40%) and is therefore likely to impact 21st 96 

century projections of ocean CO2 uptake (Lebehot et al., 2019). There is a great diversity in 97 

how ESMs represent alkalinity and the main driver of its vertical gradient in the ocean, the 98 

carbonate pump (Planchat, Kwiatkowski, et al., 2023). In particular, few ESMs consider 99 

aragonite in addition to calcite, and none of them represent benthic calcifiers. The spatial 100 

distribution of CaCO3 export at 100 m depth also varies greatly between ESMs. Finally, there 101 

is substantial divergence between models in the way CaCO3 dissolution is influenced by the 102 

saturation state, which is projected to decrease over the course of the century (Canadell et al., 103 

2021). Importantly, there are also limited representations of the dependency of CaCO3 104 

production on the saturation state, despite evidence suggesting it has a significant impact on 105 

surface alkalinity projections (Planchat, Bopp, et al., 2023). Although the surface distribution 106 

and mean global profile of alkalinity improved between CMIP5 and CMIP6 (i.e. over the last 107 

~ 10 years of climate model development), predominantly due to an increase in the strength of 108 

the carbonate pump, this is likely to have little effect on the magnitude of the projected ocean 109 

carbon sink due to negligible changes in the Revelle factor (Planchat, Kwiatkowski, et al., 110 

2023). 111 

 112 

The surface concentration of alkalinity is modified by surface freshwater fluxes and/or 113 

processes that redistribute alkalinity vertically within the water column (Millero, 2007). 114 

Alkalinity is removed from and returned to seawater through redox reactions (e.g. nitrification), 115 

and formation and dissolution of carbonate minerals. Vertical structure in alkalinity is 116 

generated through the formation, sinking and remineralisation of organic matter and 117 

particularly biological carbonates (e.g. plankton ‘shells’). The diversity of processes which 118 

contribute to the vertical redistribution of alkalinity, and the complexity of the associated 119 

ecosystem functions, result in ESMs excluding all but the most well-understood processes. For 120 

example, ESMs tend to: a) assume all calcium carbonate is produced with a pure calcite 121 

mineralogy (Yool et al., 2013), b) that its production is in a fixed ratio with one or more 122 

(typically non-calcifying) phytoplankton types (Collins et al., 2011), or as a function of 123 



temperature or latitude, and c) the dissolution of calcite is governed purely by overly simplified 124 

seawater thermodynamics (Yool et al., 2013). In practice, open ocean carbonates are produced 125 

with a range of chemistries and crystalline structures (e.g. aragonite, calcite and high Mg-126 

calcite; Salter et al., 2017), by organisms ranging from pelagic calcifiers (plankton and fish) to 127 

benthic calcifiers (e.g. corals, bivalves and gastropods). The range of carbonate minerals and 128 

structures affects the CaCO3 distribution, morphology, export pathways and sinking speeds. 129 

Carbonates are also dissolved in microenvironments ranging from the guts of grazers to 130 

sediment pore-waters (White et al., 2018), and are also found in sinking aggregates containing 131 

organic matter (Subhas et al., 2022). 132 

 133 

1.2: Challenge 2 - Net primary production (NPP)  134 

     Current ESMs disagree markedly on the magnitude of contemporary NPP and 135 

projections do not agree on even the sign of global NPP changes by the end of the century 136 

(Figure 1; CMIP6 models, SSP5-8.5 scenario). Inter-model uncertainty in CMIP6 projections 137 

has actually increased since the previous generation of CMIP5 models, especially at regional 138 

scales (Kwiatkowski et al., 2020; Tagliabue et al., 2021). Uncertainty in NPP projections across 139 

CMIP6 models results from a combination of factors regulating both resource limitation of 140 

phytoplankton growth and the loss processes that control phytoplankton standing stocks 141 

(Laufkötter et al., 2015). Both components can vary as a function of the different phytoplankton 142 

functional types included in models. Moreover, due to the simple parameterisations, it is 143 

unlikely that the inter-model uncertainty across CMIP6 models represents the true uncertainty 144 

in both contemporary or future NPP (Tagliabue et al., 2021). Despite progress, we lack a critical 145 

appraisal of how inter-model differences and missing processes contribute to uncertainty in 146 

NPP projections. 147 

 148 

Projections of future changes in NPP depend strongly on the way in which models 149 

represent the physiology and metabolism of plankton and changes to nutrient supply. 150 

Differences in how models parameterise phytoplankton nutrient limitation and resource 151 

demands, as well as zooplankton recycling that can amplify or dampen mixing-driven nutrient 152 

supply, are a key determinant of inter-model variability (Laufkötter et al., 2015; Tagliabue et 153 

al., 2021). For instance, in some regions small changes to nutrient uptake assumptions can alter 154 

the sign of NPP change (Tagliabue et al., 2020). Also important are differences across models 155 

in external nutrient input pathways and their sensitivity to change, e.g. aerosols (Yool et al., 156 

2021), ice sheets (Kwiatkowski et al., 2019), land-ocean river fluxes (Terhaar et al., 2019) and 157 



whether anthropogenic nutrient inputs are included (Yamamoto et al., 2022). An emerging 158 

source of inter-model uncertainty is the response of marine N2 fixers, which can respond to 159 

climate changes more rapidly than primary producers and, because they also represent a source 160 

of new nitrogen, contribute to driving trends in NPP (Bopp et al., 2021; Wrightson & 161 

Tagliabue, 2020). Lastly, we lack sufficient understanding of the role of plankton diversity, 162 

acclimation or adaptation, and response to multiple concurrent drivers, to develop 163 

parameterisations appropriate for inclusion in ESMs (Boyd et al., 2018; Martiny et al., 2022).  164 

 165 

1.3: Challenge 3 - Interior respiration 166 

Climate models vary widely in their parameterisation of processes responsible for 167 

particle formation and respiration, resulting in high uncertainty in future projections of 168 

particulate organic carbon (POC) flux. Current model projections do not even agree on the sign 169 

of change in POC export from the upper ocean by 2100 (Figure 1), with models disagreeing on 170 

whether export will increase or decrease over 84% of the ocean (CMIP6, SSP5-8.5; Henson et 171 

al., 2022). Uncertainty in model projections of export has actually increased since the previous 172 

generation of CMIP5 models (Laufkötter et al., 2016). Preliminary assessment of POC flux to 173 

1000m in CMIP6 models suggests a similar level of inter-model disagreement for both deep 174 

fluxes and the transfer efficiency (POC flux at 1000m/POC flux at 100m), a measure of the 175 

efficiency of the biological carbon pump (Figure 1; Wilson et al., 2022).  176 

 177 

Factors altering the efficiency and functioning of interior respiration include those due 178 

to altered microbial, phytoplankton and zooplankton community structure (Fu et al., 2016), 179 

which alters both the magnitude of POC export from the upper ocean and the type of sinking 180 

material produced. A reduction in the viability of calcifying organisms due to ocean 181 

acidification may affect biological carbon pump efficiency by reducing the amount of material 182 

available to ballast POC (Matear & Lenton, 2014). Other climate effects such as warming and 183 

changing nutrient availability could result in alterations to the magnitude and efficiency of the 184 

biological carbon pump via changes in phytoplankton community composition (Cabré et al., 185 

2015), which potentially alters particle composition and size, respiration rate and 186 

aggregation/fragmentation of sinking particles. Variable organic matter stoichiometry may 187 

increase the amount of carbon stored via biological processes relative to the amount of NPP, 188 

and so fixed stoichiometry models (as typically used in CMIP6) may underestimate ocean 189 

carbon uptake (Kwiatkowski et al., 2018). Additionally, higher water temperatures will tend to 190 

increase organismal metabolic rates, more so for respiration than for NPP (Boscolo-Galazzo et 191 



al., 2018; Cavan et al., 2019). Resolving uncertainties in future projections of interior 192 

respiration is critical, as any increase in respiration would shoal the depth to which organic 193 

carbon penetrates into the deep ocean, which would tend to create a positive feedback between 194 

respiration and atmospheric CO2 concentration (Kwon et al., 2009; Segschneider & Bendtsen, 195 

2013), and vice versa.  196 

 197 

1.4: Project aims 198 

The aim of this work is to identify major knowledge gaps in relation to biological 199 

processes that have an influence on determining the future biologically-mediated storage of 200 

carbon in the ocean within the 3 ‘Challenges’. We prioritised these knowledge gaps through 201 

both an expert assessment of the literature conducted by the project team (which consists of 202 

the authors of this paper) and an international community-wide survey. Finally, we compare 203 

the results of both assessments and speculate how to overcome barriers to inclusion of key 204 

processes in ESMs. 205 

 206 

2. Methods: 207 

We followed a similar framework as an earlier gap analysis focused on export fluxes 208 

(Henson et al., 2022). In this project, we assessed processes in the 3 Challenge themes 209 

described above and extended the reach of our assessment by incorporating an international 210 

community survey. Our initial task was to undertake a literature review to identify published 211 

articles describing (ideally quantitatively) the significance of a particular biological process or 212 

processes on ocean carbon storage. We reviewed papers that used observations, experimental 213 

work, and/or modelling approaches, and papers that focused both on contemporary conditions 214 

and the response to future climate change. In total, we reviewed 193 papers and collated 215 

information regarding the importance and uncertainty in each process into extensive evidence 216 

tables (Supplementary Tables S1-S3). 217 

  218 

On the basis of the literature review, we sorted the identified processes into groups. 219 

This was necessary to reduce the number of possible process categories to ~ 15 per Challenge. 220 

Each process group may encompass several sub-processes. For example, within the primary 221 

production Challenge, we identified a group of processes that we term ‘Resource limitation of 222 

growth’. This includes limitation by all the major macronutrients, i.e. nitrate, phosphate and 223 

silicate, although we recognise that the supply mechanisms of, and NPP response to, different 224 

nutrients may differ. These groupings were necessary to assist both with our expert assessment 225 



and the community survey. Greater than 15 categories would have made the survey design and 226 

analysis difficult, as well as made the survey so long as to be off-putting to respondents. The 227 

process categories within each Challenge, and the short descriptive text used in the survey to 228 

clarify what each category encompasses, are given in Tables 1-3. 229 

 230 

The expert assessment of the identified processes was undertaken by the authors of this 231 

study. We assessed each process for its ‘Importance’ and ‘Uncertainty’ and assigned each a 232 

low, medium or high rating. We defined Importance as a process having a 233 

substantial/moderate/weak (for high/medium/low rating) influence on determining the future 234 

biologically-mediated storage of carbon in the ocean. We defined Uncertainty as a process 235 

having minimal/some/strong (for high/medium/low rating) supporting evidence, and 236 

additionally contrasting evidence with no consensus reached by the scientific community (high 237 

uncertainty), or no clear consensus reached by the scientific community (medium uncertainty), 238 

or consensus has been reached by the community (low uncertainty). 239 

 240 

For the expert assessment, each member of the project team evaluated the evidence 241 

gathered from the literature review and independently assigned an Importance and Uncertainty 242 

rating to each process, based on the presented evidence (Supplementary Tables S1-S3). After 243 

the results had been compiled, we met to discuss our individual results and reach consensus on 244 

the final ratings, focusing our discussions primarily on those processes for which there was 245 

disagreement.  246 

 247 

2.1: Community survey development, data collection and analysis 248 

To obtain a broad sample of responses, a questionnaire was developed in English (the 249 

full survey is provided in Supplementary Text S1). The survey was distributed in autumn 2022 250 

using social media and through the authors’ professional and personal networks, resulting in 251 

120 complete responses. Quantitative data were analysed in R v4.1.0 using the Tidyverse 252 

collection of packages (Wickham et al., 2019). Likert data were analysed using the ‘Likert’ 253 

function from the Likert package in R; no importance weightings were assigned to questions.  254 

 255 

Section A of the survey collected demographic information (age, gender identity, education, 256 

location). Section B gathered information about respondents’ scientific expertise (area of 257 

expertise, career stage, length of time in oceanography). The remainder of the questionnaire 258 

captured respondents’ views on the key processes for the 3 Challenges of net primary 259 



production, interior respiration and biological contributions to alkalinity. These were defined 260 

to participants as “Net Primary Productivity is the net rate at which marine life converts 261 

dissolved CO2 into organic carbon”, “Interior respiration refers to the biological processes 262 

controlling the conversion of organic carbon contained in non-living material into inorganic 263 

carbon” and “Biological contributions to alkalinity are the inputs and range of natural 264 

biological processes that act to alter seawater alkalinity”.  The aim of the survey was to rank 265 

those processes which, if included in global climate models, could potentially decrease 266 

uncertainty in projections of future ocean carbon storage. Respondents had the option to skip 267 

any questions in any Challenge that they felt were outside their area of expertise. Respondents 268 

were asked to choose and rank the top 3 processes they thought had an important influence on 269 

determining the future biologically-mediated storage of carbon in the ocean associated with 270 

each of the 3 Challenges. The topic of each Challenge was first defined before respondents 271 

were asked about their level of expertise (high/moderate/some/little/no expertise) in each 272 

Challenge area. Respondents could choose not to complete the process selection for a particular 273 

Challenge. They were then asked their opinion on the importance of the Challenge, using a 5-274 

point Likert scale. Respondents were asked to rank, in order of importance, their top three 275 

processes.  Respondents were informed that “importance” in the context of the survey meant 276 

how significant the process was likely to be for determining the future biologically-mediated 277 

storage of carbon in the ocean. Respondents were also reminded that the focus for this survey 278 

was the global and centennial scales relevant to coupled climate models. Anonymised survey 279 

results are available in Data Set S1. 280 

 281 

Ethics Statement: All respondents completed the survey themselves and gave their 282 

permission to use the results. Individuals were not identifiable from the data provided. The 283 

survey described in this paper was reviewed and approved by the University of Plymouth 284 

Science and Engineering Research Ethics Committee. 285 

 286 

3. Results: 287 

The importance and uncertainty ratings assigned to each process by the expert 288 

assessment are given in Tables 1-3, with the evidence supporting these assessments in 289 

Supplementary Tables S1-S3. In the following sections, we briefly discuss the rationale for 290 

identifying processes as having ‘high’ importance. We do not provide details in the main text 291 

of the rationale for identifying processes as having medium or low importance, but the 292 

supporting evidence is given in Supplementary Tables S1-S3.  Note that ‘high’ importance in 293 



this study indicates that there is strong evidence for a particular process’s importance in ocean 294 

carbon storage. This implies that processes or fields of research which have been understudied 295 

are therefore likely to present fewer topics rated as high importance. 296 

 297 

3.1: Biological contributions to alkalinity - expert assessment 298 

Of the 15 shortlisted processes considered significant for biological contributions to 299 

alkalinity, two were ranked as having high importance based on the available evidence: high 300 

level understanding of calcium carbonate production and rain ratio.  301 

 302 

High level understanding of calcium carbonate production refers to the amount and 303 

distribution of biological CaCO3 production and its sensitivity to climate change. A change in 304 

calcification induces a surface alkalinity and DIC anomaly in a 2:1 ratio and thus has a direct 305 

consequence on the air-sea carbon flux and ocean buffer capacity. However, although 306 

projections of this anomaly are generated by ESMs (Planchat, Kwiatkowski, et al., 2023), it is 307 

difficult to verify the projected changed over the observational era due to the small amplitude 308 

of the alkalinity anomaly (Ilyina et al., 2009), and the overprinting of any biological alkalinity 309 

signals by changes driven by alterations to the water-cycle. Furthermore, the impacts of climate 310 

change and ocean acidification on calcifiers are likely to be highly region- and taxa-dependent, 311 

due to the spatial heterogeneity in environmental stressors (e.g. with respect to acidification; 312 

Orr et al., 2005) and the heterogeneity in sensitivity of calcifiers to these changes (e.g. Leung 313 

et al., 2022; Seifert et al., 2020). For example, increased light availability in the polar regions 314 

could favour calcification by coccolithophores, while shoaling of the saturation horizons could 315 

threaten pteropods or cold-water corals (Leung et al., 2022; Orr et al., 2005). In the tropics, 316 

increased temperature could significantly impact warm-water corals through bleaching events 317 

(Bindoff et al., 2019). It should be noted that although calcification induces biological carbon 318 

storage, via sinking of particulate inorganic carbon (PIC) to the interior ocean, it also induces 319 

outgassing of CO2 from the ocean surface, due to the imbalance in carbonate chemistry that it 320 

causes. 321 

 322 

Rain ratio is the ratio between the export of PIC and POC. Assessing changes in this 323 

ratio in response to climate change and ocean acidification is central to estimating the overall 324 

impact of biology on alkalinity and DIC in the ocean’s surface layer. The rain ratio anomaly 325 

can be used to estimate biologically-mediated changes in surface carbonate chemistry, and 326 

hence in air-sea carbon flux (Humphreys et al., 2018), as well as, in the longer term, the ocean's 327 



buffer capacity in the face of rising atmospheric CO2 concentration (Zeebe & Wolf-Gladrow, 328 

2001). Although the future trend in POC export remains uncertain in ESM projections, most 329 

models show a decrease (Henson et al., 2022) by 2100; however the sign of change in the 330 

projected PIC export is more uncertain, driving divergent rain ratio anomalies in projections 331 

(Planchat, Bopp, et al., 2023). 332 

 333 

3.2: Net primary production - expert assessment 334 

     Of the 15 shortlisted processes considered significant for NPP, four were ranked as 335 

having high importance for reducing uncertainty in future model projections based on the 336 

available evidence. These were: resource limitation of growth, phytoplankton loss processes, 337 

nitrogen fixation and zooplankton processes. 338 

  339 

Resource limitation of growth was the top ranked process due to its central and well 340 

understood role as a bottom-up driver of oceanic primary production. Within this process 341 

grouping, we identified phytoplankton growth limitation by macronutrients, micronutrients, or 342 

light, or co-limitation of growth by multiple nutrients and light, and the role of inorganic and 343 

organic nutrient limitation as being of particular importance. There is a rich body of 344 

observational literature supporting these forms of growth limitation and whilst most ESMs 345 

currently represent macronutrient, light and micronutrient (e.g. iron) limitation to varying 346 

extents, there are nuances to these relationships that require refinement and development in 347 

order to improve confidence in model projections (Laufkötter et al., 2015; Steinacher et al., 348 

2010; Tagliabue et al., 2020). 349 

  350 

Phytoplankton loss processes, including mortality and zooplankton grazing, were also 351 

considered to be of high importance as they modulate the standing stocks of primary producers, 352 

and models tend to derive NPP rates as the product of resource-limited growth and standing 353 

stocks (Bindoff et al., 2019). Under the simplest scenario, grazing or mortality rates that are set 354 

too high act to depress NPP, whereas when rates are too low NPP may be higher than 355 

observational estimates. On regional scales, recent inter-model comparisons demonstrate that 356 

the representation of zooplankton grazing can significantly alter the balance between 357 

production and grazing in low latitude regions, particularly in response to thermal changes 358 

(Laufkötter et al., 2015). Viral mortality is also increasingly recognised as a key factor with the 359 

potential to control bloom formation and termination, yet viruses remain poorly described in 360 

marine ecosystem models and are largely absent in ESMs (Flynn et al., 2021). 361 



  362 

Nitrogen fixation is a globally significant source of new nitrogen to the ocean that may 363 

compensate for the expected decline in nitrate availability due to increasing stratification in a 364 

warmer ocean (Bindoff et al., 2019). However, the role of nitrogen fixation in aiding the 365 

biological storage of carbon in the ocean in the context of a changing climate remains unclear 366 

(Bopp et al., 2022). Modelling studies that have demonstrated significant differences in model 367 

estimates of NPP when nitrogen fixation is included or excluded indicate a crucial role for this 368 

process in centennial-scale projections of ocean productivity (Bopp et al., 2022; Tagliabue et 369 

al., 2021; Wrightson & Tagliabue, 2020). Furthermore, recent observational studies have 370 

greatly expanded the known geographic range and taxonomic identities of diazotrophic 371 

organisms in the ocean (e.g. Sipler et al., 2017). Overall it is clear that nitrogen fixation will 372 

likely play an important role in future projections of NPP change (Bopp et al., 2022; Paulsen 373 

et al., 2017; Wrightson & Tagliabue, 2020), also there remains substantial uncertainty 374 

associated with the climate response of different groups of nitrogen fixers and their 375 

physiological feedbacks in a changing climate (Wrightson et al., 2022).  376 

  377 

Zooplankton processes was also a highly ranked category, with this grouping including 378 

specific processes such as rates of zooplankton growth, respiration and grazing, and also the 379 

role zooplankton play in nutrient recycling. Zooplankton are a critical component of the ocean 380 

food web and it is already recognised that improved representation of zooplankton in ESMs 381 

will likely improve estimates of carbon cycling (e.g. Petrik et al., 2022). Furthermore, increased 382 

uncertainties in NPP projections may arise due to inter-model differences in the 383 

parameterisation of grazing rates, particularly their response to temperature changes (Tagliabue 384 

et al., 2021). With regards to nutrient excretion, mesozooplankton nutrient regeneration may 385 

provide a significant fraction of the total phytoplankton and bacterial production requirements 386 

(Hernández-León et al., 2008), but the response of nutrient regeneration rates to a changing 387 

climate can also vary markedly (Richon & Tagliabue, 2021). 388 

 389 

3.3: Interior respiration - expert assessment 390 

For interior respiration we concluded that, of the 15 processes assessed, 6 of them had 391 

high importance based on the available evidence: biotic fragmentation, aggregation, 392 

preferential remineralisation, microbial solubilisation, particle characteristics and particle type.  393 

 394 



Biotic fragmentation refers to the breaking-up of particles into smaller pieces, 395 

predominantly via zooplankton flux feeding or swimming. Fragmentation is likely to be highly 396 

significant in controlling flux attenuation, with recent estimates finding that, at least during 397 

high flux events, fragmentation contributes ~ 50% of flux loss in the mesopelagic (Briggs et 398 

al., 2020), although this study was unable to distinguish between biotic and abiotic (via 399 

turbulence or shear) fragmentation. The swimming action of Euphausids readily fragments 400 

particles and at typical abundances they could interact with 50-100% of particles in the upper 401 

100m of the ocean (Dilling & Alldredge, 2000; Goldthwait et al., 2004). Alternatively (or 402 

additionally) fragmentation may occur as a consequence of flux-feeding whereby zooplankton 403 

consume marine aggregates or fecal pellets and in the process break off small fragments of the 404 

particle, either unintentionally (sloppy feeding; Lampert, 1978) or deliberately to increase the 405 

nutritional content of particles for subsequent ingestion (microbial gardening; Mayor et al., 406 

2014). In a modelling study, particle fragmentation by small copepods was predicted to account 407 

for ~ 80% of the flux attenuation of fast sinking particles (Mayor et al., 2020).  408 

 409 

Aggregation refers to the formation of larger particles from smaller ones which can be 410 

mediated by sticky exudates that increase the success rate of collisions. As single cells are 411 

rarely sufficiently large or dense to sink independently, aggregation must take place in the 412 

upper epipelagic or mesopelagic to account for the presence of phytoplankton material in deep 413 

sediment traps (Durkin et al., 2021). Observation and model-based studies have concluded that 414 

aggregation is an essential precursor to large flux events (Gehlen et al., 2006; Jackson, 2005; 415 

Martin et al., 2011). Aggregation has been shown to occur by the production of transparent 416 

exopolymer particles (TEP) by diatoms, possibly in response to nutrient limitation (Martin et 417 

al., 2011), or via differential settling whereby faster sinking particles ‘catch up’ with slower 418 

sinking particles and coagulate (Riebesell, 1991). Despite its role as a significant means of 419 

particle formation and transformation, the mechanisms underlying how, when and why 420 

aggregation occurs remain poorly known. 421 

 422 

Preferential remineralisation describes the differences in remineralisation depth of the 423 

constituents of particulate organic matter relative to carbon. In sinking organic matter, 424 

phosphate and nitrate tend to be preferentially and rapidly remineralised relative to carbon 425 

(Anderson & Sarmiento, 1994; Schneider et al., 2003). The drawdown of excess carbon relative 426 

to nitrogen or phosphate (‘carbon over-consumption’) represents a potential negative feedback 427 

mechanism, as it results in additional drawdown of atmospheric CO2 (Riebesell et al., 2007). 428 



Modelling work suggests that C:P or C:N variability in the mesopelagic can alter the strength 429 

of carbon sequestration by ~ 20% (Tanioka et al., 2021; Tian et al., 2004).  430 

 431 

Microbial solubilisation is the respiration of dissolved and particulate organic material 432 

by microbial communities, where rates may be impacted by environmental conditions, the 433 

microbial community structure, metabolic rates and growth efficiency. The influence of 434 

temperature, oxygen concentration and pressure on rates of microbial respiration are 435 

moderately well understood (Amano et al., 2022; Cavan et al., 2019; Weber & Bianchi, 2020) 436 

and are implicitly incorporated into some biogeochemical models (Laufkötter et al., 2017). 437 

However the relative contributions to respiration by particle-attached or free-living microbial 438 

communities is not well-constrained, and neither are the details of how microbial ecology affect 439 

respiration, such as the conditions under which colonies may be established on sinking 440 

particles, mortality rates, and cell attachment and detachment (Nguyen et al., 2022). 441 

 442 

Particle characteristics describes the size, shape, porosity, density and strength of 443 

particles. These characteristics can alter particle sinking speeds, and their susceptibility to 444 

remineralisation and aggregation/fragmentation. Sinking speed is often considered to be 445 

directly linked to particle size via Stokes’ Law, however several studies have found no clear 446 

correlation (Iversen & Lampitt, 2020; Williams & Giering, 2022), although large data 447 

syntheses seem to show some connection (Cael et al., 2021). Instead, the particle’s excess 448 

density and/or morphology are likely to be critical factors (Prairie et al., 2019; Trudnowska et 449 

al., 2021). Most global climate models only distinguish two particle sizes at most (Henson et 450 

al., 2022), although size-resolving schemes have been used in uncoupled simulations (Kriest 451 

& Oschlies, 2008). There are as yet insufficient observations to establish the links between 452 

remineralisation potential and particle shape, porosity or strength.  453 

 454 

Particle type refers to whether a particle is, for example, a fecal pellet, aggregate, 455 

carcass etc., which will affect the sinking speed and susceptibility to remineralisation and 456 

aggregation/fragmentation. The phytoplankton and zooplankton community composition will 457 

also affect the types of particles generated. The details of the sinking particle type, e.g. whether 458 

diatom frustule, zooplankton carcass, diazotroph, salps etc. plays a strong role in setting the 459 

sinking velocity and thus carbon storage (e.g. Bonnet et al., 2023; Durkin et al., 2021; Halfter 460 

et al., 2022; Maerz et al., 2020; Steinberg et al., 2023), with sometimes contradictory evidence 461 

in the literature for the importance of different particle types (e.g. salp fecal pellets; Iversen et 462 



al., 2017; Steinberg et al., 2023). The complexity of the possible particle types, how they may 463 

combine into multi-component aggregates, and the lack of a direct correspondence with 464 

remineralisation potential presents a major challenge for robust modelling of the biological 465 

carbon pump.  466 

 467 

For all of the processes identified above as having high importance to interior biological 468 

carbon storage, there are significant remaining uncertainties regarding the mechanisms at play. 469 

In addition, observational constraints mean that there is little information on how these 470 

processes may vary temporally and spatially. Both of these factors make incorporating the 471 

interior respiration processes we identify as ‘high importance’ into biogeochemical models 472 

challenging. 473 

 474 

3,4: Community survey results 475 

In total, we received 120 responses to the community survey (Data Set S1). The 476 

demographics of the respondents are shown in Figure 2. For those who chose to declare their 477 

gender identity, 51% of respondents identified as female, 47% identified as male, and 1.8% 478 

identified as non-binary. The majority of respondents had attained a PhD-level qualification 479 

(78%), with the most common career stages being lecturer/professor (30%), research scientist 480 

(25%) and post-doc researcher (13%). The country in which respondents currently worked 481 

showed a wide geographical spread, albeit with a predominance from the global north, with all 482 

continents (except South America) having at least one respondent. The majority of respondents 483 

currently worked in the UK (54%), as might be expected given that the BIO-Carbon 484 

programme is UK-funded. A range of expertise was captured in the survey, with those focusing 485 

on modelling (45 respondents) and observations (48 respondents) roughly equally represented, 486 

with fewer focusing on experimental work (27 respondents). The majority of respondents 487 

identified as biogeochemists (63 respondents) or marine ecologists (49 respondents). Note that 488 

respondents could choose more than one answer for these two questions. 489 

 490 

In total, 105, 88 and 61 respondents completed the sections on NPP, interior respiration 491 

and biological contributions to alkalinity, respectively. Of these, those with high or moderate 492 

expertise numbered 57, 40 and 23, respectively. We only present results from those who 493 

considered themselves to have high or moderate expertise, noting that this is only 494 

approximately half of those completing the ranking for a particular Challenge and in some 495 



cases, particularly for alkalinity, represents a rather small sample size. The overall ranking of 496 

processes from the community survey is shown in Figure 3.  497 

 498 

The self-identified field of expertise of the respondents sometimes changed the ranking 499 

of the processes, although generally the top 5 were similar (Figure 4). Note that for some sub-500 

groups the number of respondents is rather low (< 10) and so we only give a broad overview 501 

of results, rather than a detailed analysis. For NPP, resource limitation of growth, zooplankton 502 

processes, phytoplankton loss processes and organic matter cycling were in the top 5, 503 

regardless of field of expertise. For those identifying as modellers, food web complexity was 504 

additionally in the top 5; for observationalists and experimentalists, phytoplankton adaptation 505 

and acclimation made the top 5 processes. For interior respiration, microbial solubilisation, 506 

organic matter lability, particle characteristics and zooplankton processes were in the top 5, 507 

regardless of expertise. Additionally, particle type made the top 5 for modellers and 508 

observationalists, and biotic fragmentation for experimentalists. For alkalinity, there was 509 

somewhat more disparity in the top 5 processes between expertise, however note that only 4 510 

respondents identifying as experimentalists with high/moderate expertise in alkalinity 511 

participated. All fields of expertise agreed that high level of understanding of calcium 512 

carbonate production, riverine supply of alkalinity and biotically mediated dissolution are in 513 

the top 5 most important processes, with physiology of calcium carbonate production, 514 

sedimentary processes, primary production and remineralisation, rain ratio, and plankton 515 

community making the top 5 for different expertise groups. Additional segregation of expertise 516 

into field of study (e.g. biogeochemistry, ecology etc.) is reported in Supplementary Figure S1 517 

but not discussed further due to the very small sample size in many categories. 518 

  519 

4. Discussion: 520 

We identified several key knowledge gaps associated with the biological storage of 521 

carbon, which were prioritised on the basis of their potential to reduce uncertainty in model 522 

estimates of the future biologically-mediated storage of carbon in the ocean. We acknowledge 523 

that the community survey and expert assessment (as with any equivalent exercise) is 524 

necessarily subjective to some degree, and the results may be affected by the pre-existing 525 

knowledge and biases of the participants.  Although we defined ‘Importance’ within the survey 526 

questions (see Supplementary Text S1), there will inevitably be differences in respondents’ 527 

application of the definition. We also recognise that a complete and comprehensive assessment 528 

of all available literature was not possible and so inevitably some published work will have 529 



been overlooked or omitted.  Nevertheless, we provide excerpts from the 193 papers included 530 

in our analysis that provide the underlying evidence for our assessment (Supplementary Tables 531 

S1-S3). 532 

 533 

In general, the expert assessment and community survey agreed in terms of the most 534 

significant processes (Figure 3). For example, resource limitation of growth (for NPP), 535 

microbial solubilisation (for interior respiration) and high level understanding of calcium 536 

carbonate production (for alkalinity) were within the top ranking processes for both the survey 537 

and expert assessment. Some significant differences did emerge however, such as the low 538 

ranking of nitrogen fixation (for NPP) in the survey, which was ranked as high importance in 539 

the expert assessment. These differences may arise from a combination of the pre-existing bias 540 

in the literature used for the expert assessment and potentially the inherent limitations of a 541 

community survey. Whereas the project team spent considerable time on combing the 542 

literature, assessing the papers, assembling the evidence tables, and discussing the results to 543 

reach consensus on the rankings, the community survey was designed to be completed in 544 

approximately 15 minutes and respondents were not provided with the evidence collated for 545 

the expert assessment. 546 

 547 

Although processes may have been identified as important here, unless it is tractable to 548 

observe them in sufficient detail to develop efficient model parameterisations, incorporating 549 

many of these processes into climate models remains challenging. Parameterisations for the 550 

ocean biogeochemistry component of climate models can be developed from theory, idealised 551 

simulations, laboratory experiments or field observations. In order to develop a robust 552 

parameterisation for a process, observations from a single experiment or field programme alone 553 

(or even a handful of data points) are rarely sufficient. Instead, data representative of a broad 554 

range of environmental conditions are ideally required, which, in the field, demands good 555 

spatial and seasonal coverage, and also international cooperation to collate such data. Data 556 

synthesis activities are crucial to these efforts, as are attempts to standardise sampling and 557 

analysis protocols to generate directly inter-comparable datasets.  558 

 559 

Parameterisation of many of the processes identified in this study requires data 560 

collection at sea. The growing adoption and use of autonomous technologies has greatly 561 

increased the amount of field data available, particularly by providing the opportunity to 562 

resolve temporal and vertical variability, and in the case of the BGC-Argo network, spatial 563 



variability as well. Although new methods and novel sensors (e.g. Estapa et al., 2019; Giering 564 

et al., 2020) to obtain biogeochemically-relevant data (e.g. Briggs et al., 2020; Clements et al., 565 

2022) from autonomous vehicles have emerged, nevertheless many of the processes identified 566 

here cannot be observed remotely, or inferred through proxies, for example organism-particle 567 

interactions, nutrient recycling rates, microbial activity etc. This presents challenges for model 568 

development, but also opportunities for observational and experimental programmes to 569 

broaden efforts to capture new information about relevant processes, or for focussed process 570 

studies. 571 

 572 

Even with additional sources of data, challenges remain in incorporating additional 573 

processes into the ocean biogeochemistry component of climate models. Developing robust 574 

parameterisations requires observations or experiments across a wide dynamic range of 575 

conditions, and evaluating model results requires independent data with the appropriate spatial 576 

and seasonal coverage. Adding additional parameterisations to models increases the 577 

complexity, and so run time and storage requirements which, particularly in the case of global 578 

ESMs, may be prohibitive. Therefore, demonstrating that the additional processes have a 579 

significant impact on the relevant components of the model, which will depend on the 580 

objectives for developing the model (which can be diverse), is important. In the context of our 581 

work here, the objective may be to improve representation of ocean carbon fluxes, such as net 582 

primary production or the strength of the biological carbon pump, and their climate feedbacks 583 

for example. Demonstrating an impact on model performance may be achieved through 1-D 584 

‘test bed’ versions of climate models which can be simply and quickly run, potentially through 585 

sensitivity simulations with multiple permutations to establish the form or parameter values 586 

needed to represent an additional process. Alternatively, offline physics from coupled model 587 

output can be used to run multiple experiments at global scale that may be highly complex (e.g. 588 

Bopp et al., 2022; Tagliabue et al., 2020; Wrightson et al., 2022).  Rapid testing of alternate or 589 

additional parameterisations in a 3-D framework can also be achieved using the transport 590 

matrix method (Khatiwala, 2007).  591 

 592 

Our literature review and community survey highlighted several processes that have 593 

high importance and high uncertainty which may act as focal areas for future projects. More 594 

broadly, maximising the gains from modelling, fieldwork and experimental studies relies on 595 

collaboration between communities. Co-design of research projects from the outset can ensure 596 

outputs will be useful to both communities, as well as fostering early recognition of emerging 597 



research topics and potential limitations. Considering the potential for scaling-up field or 598 

experimental data at the project planning stage, for example through empirical or mechanistic 599 

relationships with commonly observed (and modelled) environmental variables will ensure the 600 

broadest applicability of the project results. This will require data synthesis activities to be 601 

embedded in research programmes, as the information obtained from a single project is rarely 602 

sufficient to provide data on the large space and time scales necessary for model development 603 

and validation. Data synthesis is most effective and impactful when data is shared openly and 604 

hence wide collaboration is facilitated. Exploring how model behaviour reflects differences in 605 

model parameterizations, functional equations, and parameter values in both the euphotic and 606 

mesopelagic zones and conducting sensitivity analyses will assist in ensuring alterations to 607 

biogeochemical models are both parsimonious and robust. 608 

 609 

Significant challenges lie ahead in modelling the diversity of living organisms’ 610 

responses to climate forcing and the subsequent feedbacks through the ocean’s carbon cycle.  611 

Identifying high priority knowledge gaps is a crucial first step in this process and requires 612 

synergy across observational, experimental and modelling communities.   613 
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Table 1: Expert assessment of importance and uncertainty in processes related to the biological 624 

contribution to alkalinity. 625 

 626 
Process Definition Importance  Uncertainty 

High level 
understanding of 
calcium carbonate 
production 

e.g. the amount and distribution of biological 
CaCO3 production and its sensitivity to future 
environmental change. 

High Medium 

Rain ratio High level controls on Particulate Inorganic Carbon 
to Particulate Organic Carbon (PIC:POC) ratio of 
export. 

High Medium 

Mineralogy of calcium 
carbonate production 

Production of calcium carbonates such as 
aragonite and high magnesium calcite which have 
higher solubilities than standard calcite. 

Medium High 

Plankton community Our understanding of and ability to represent 
calcifiers within the planktonic ecosystem models. 

Medium High 

Fish derived 
carbonates 

Carbonates produced in the guts of bony fish. 
Medium High 

Biotically mediated 
dissolution 

Dissolution of CaCO3 in zooplankton/fish guts and 
within fecal pellets and aggregates. 

Medium Medium 

Abiotic dissolution Dissolution of CaCO3 in undersaturated waters. Medium Medium 

Riverine supply of 
alkalinity 

Alkalinity input to the ocean via rivers. 
Medium Medium 

Physiology of CaCO3 
production 

How CaCO3 is produced by different organisms. 
Low High 

Sedimentary processes Alkalinity fluxes across the sediment-water 
interface, in response to processes such as 
anaerobic sulphate reduction. 

Low High 

Calcium carbonate 
within sea ice 

Formation and dissolution of carbonates changing 
the total alkalinity to dissolved inorganic carbon 
ratio within sea ice. 

Low High 

Nutrient cycling Processes beyond primary production and 
remineralisation such as 
nitrification/denitrification.  

Low Medium 

Organic alkalinity Contribution of weakly acidic functional groups 
present in Dissolved Organic Matter. 

Low Medium 

Primary production 
and remineralisation 

Assimilation and release of nutrients that 
contribute to total alkalinity. 

Low Low 
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  628 



 629 

Table 2: Expert assessment of importance and uncertainty in net primary production processes. 630 

 631 
Process Definition Importance  Uncertainty  

Resource limitation of 
growth 

Limitation of phytoplankton growth by both 
major and micro nutrients and light. 

High Medium 

Phytoplankton loss 
processes 

All losses of phytoplankton biomass to grazing 
or mortality. 

High Medium 

N2 fixation Conversion of dinitrogen into fixed nitrogen by 
diazotrophs. 

High Medium 

Zooplankton processes Activity of zooplankton, encompassing grazing, 
nutrient recycling etc. 

High Medium 

Phytoplankton 
adaptation, acclimation 

Ability of phytoplankton to adjust their 
physiology in response to environmental 
changes. 

Medium High 

Microbial loop Turnover of organic nutrients and carbon by 
bacteria. 

Medium High 

Response to thermal 
stress 

How plankton are parameterised to respond 
to temperatures exceeding their thermal 
optimum. 

Medium High 

Phytoplankton 
physiology 

The cellular functioning of phytoplankton, 
including their photosynthesis, respiration and 
nutrient acquisition traits. 

Medium Medium 

Plankton metabolism Chemical processes that occur within 
individual organisms.  

Medium Medium 

External nutrient inputs Supply of nutrients into the ocean from rivers, 
sediments, atmosphere and hydrothermal 
venting. 

Medium Medium 

Micronutrients Nutrients typically present at low 
concentration - including iron, manganese, 
zinc, cobalt, nickel. 

Medium Medium 

Organic matter cycling Transformation of dissolved and particulate 
organic matter into inorganic forms, including 
acquisition of organic nutrients. 

Low High 

Food web complexity The number of groups in a food web (including 
plankton, bacteria, fish and viruses) and their 
interactions. 

Low High 

Mixotrophy Plankton that utilise both autotrophy and 
heterotrophy. 

Low High 
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 634 

Table 3: Expert assessment of importance and uncertainty in interior respiration processes. 635 

 636 
Process Definition Importance  Uncertainty  

Biotic 
fragmentation 

Fragmentation of particles into smaller pieces by the 
action of zooplankton flux feeding or swimming. 

High Medium 

Aggregation Formation of larger particles by the aggregation of 
smaller particles. Transparent Exopolymer Particles 
(TEP) and other sticky exudates may increase the 
success rate of collisions. 

High Medium 

Preferential 
remineralisation 

Preferential remineralisation of elements relative to 
carbon of dissolved organic matter (DOM) and 
particulate organic matter (POM) 

High Medium 

Microbial 
solubilisation 

Microbial respiration of dissolved and particulate 
organic material. The rate of solubilisation may be 
impacted by the microbial community and metabolic 
rates and growth efficiencies. Pressure, temperature 
and oxygen concentration, and other factors will 
impact these rates. 

High Medium 

Particle 
characteristics 

The size, morphology, porosity and density of particles 
which can affect their sinking speed and susceptibility 
to remineralisation, fragmentation or (dis)aggregation 
(excluding the role of ballast). 

High Medium 

Particle type The type of particle (e.g. fecal pellet, aggregate, single 
cell, carcass, mucus web) will affect the sinking speed 
and susceptibility to remineralisation or 
fragmentation/aggregation.  

High Medium 

Zooplankton 
vertical migration 

Daily vertical migration of zooplankton between 
euphotic and mesopelagic depths. Also referred to as 
active flux, with excretion, egestion, respiration and 
mortality occurring in the mesopelagic.  

Medium High 

Fish-mediated 
processes 

Daily vertical migration of fish and their contribution to 
flux via fecal pellet production.  

Medium High 

Ontogenetic 
migration 

Seasonal migration of zooplankton to mesopelagic 
depths where they remain over winter (also referred to 
as the lipid pump). 

Medium High 

Mineral ballasting Biomineral (biogenic silica, calcium carbonate) or 
lithogenic (dust) material which increases the specific 
density and sinking speed of particles. 

Medium Medium 

Organic matter 
lability 

Particulate organic matter and dissolved organic 
matter is composed of compounds of varying lability, 
with some more readily remineralised than others. 

Medium Medium 

Zooplankton 
processes  

Zooplankton particle interactions (e.g. grazing, fecal 
pellet production, coprophagy) excluding biotic 
fragmentation and diel vertical migration.  

Medium Medium 

Ectoenzymatic 
hydrolosis 

Microbial excretion of extracellular enzymes to 
degrade complex organic compounds. 

Low High 

Viral infection Viral infection of cells can lead to cell lysis. This may 
lead to the viral shuttle, i.e. increased secretion of 
sticky material promoting aggregation, or to the viral 
shunt, i.e. increased DOC production and a reduction in 
transfer of carbon to higher trophic levels.  

Low High 

Abiotic 
fragmentation 

Fragmentation of particles into smaller pieces by 
turbulence or shear. 

Low Medium 
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 640 
 641 

Figure 1: Time series of global mean salinity normalised alkalinity, net primary production, 642 

particulate organic carbon (POC) export at 100m and transfer efficiency (POC flux at 643 

1000m/POC flux at 100m) for the period 1850-2100 (scenario SSP5.8-5) taken from the 644 

CMIP6 model output archive. Thick black line shows the multi-model mean.  645 

 646 

 647 



 648 

 649 
Figure 2: Demographics of survey respondents (n = 120). Note that for the question on 650 

‘expertise’, respondents could choose more than one category. 651 

 652 

 653 
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 655 

 656 
Figure 3: Community survey ranking of processes important to determining the future 657 

biologically-mediated storage of carbon in the ocean associated with each of the 3 Challenges. 658 

Only those respondents who assessed their expertise as high or moderate for a particular 659 

Challenge were included in the analysis. Responses are weighted so that the 1st ranked choice 660 

= 3 points, 2nd ranked choice = 2 points, and the 3rd ranked choice = 1 point. Numbers in bottom 661 

right corner of plots indicate number of respondents in that category. CCP = calcium carbonate 662 

production. Processes marked in red (green) were rated as having high (low) importance in the 663 

expert assessment. 664 
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 667 

 668 
Figure 4: Community survey ranking of processes, plotted according to expertise of the 669 

respondent. Only those respondents who assessed their expertise as high or moderate for a 670 

particular Challenge were included in the analysis. Note that respondents could choose more 671 

than one option for their expertise (or none). Numbers in bottom right corner of plots indicate 672 

number of respondents in that category. CCP = calcium carbonate production. 673 
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