75 research outputs found

    Rare familial 16q21 microdeletions under a linkage peak implicate cadherin 8 (CDH8) in susceptibility to autism and learning disability

    Get PDF
    Background: Autism spectrum disorder (ASD) is characterised by impairments in social communication and by a pattern of repetitive behaviours, with learning disability (LD) typically seen in up to 70% of cases. A recent study using the PPL statistical framework identified a novel region of genetic linkage on chromosome 16q21 that is limited to ASD families with LD. Methods: In this study, two families with autism and/or LD are described which harbour rare >1.6 Mb microdeletions located within this linkage region. The deletion breakpoints are mapped at base-pair resolution and segregation analysis is performed using a combination of 1M single nucleotide polymorphism (SNP) technology, array comparative genomic hybridisation (CGH), long-range PCR, and Sanger sequencing. The frequency of similar genomic variants in control subjects is determined through analysis of published SNP array data. Expression of CDH8, the only gene disrupted by these microdeletions, is assessed using reverse transcriptase PCR and in situ hybridisation analysis of 9 week human embryos. Results: The deletion of chr16: 60 025 584-61 667 839 was transmitted to three of three boys with autism and LD and none of four unaffected siblings, from their unaffected mother. In a second family, an overlapping deletion of chr16: 58 724 527-60 547 472 was transmitted to an individual with severe LD from his father with moderate LD. No copy number variations (CNVs) disrupting CDH8 were observed in 5023 controls. Expression analysis indicates that the two CDH8 isoforms are present in the developing human cortex. Conclusion: Rare familial 16q21 microdeletions and expression analysis implicate CDH8 in susceptibility to autism and LD

    Novel method for combined linkage and genome-wide association analysis finds evidence of distinct genetic architecture for two subtypes of autism

    Get PDF
    The Autism Genome Project has assembled two large datasets originally designed for linkage analysis and genome-wide association analysis, respectively: 1,069 multiplex families genotyped on the Affymetrix 10 K platform, and 1,129 autism trios genotyped on the Illumina 1 M platform. We set out to exploit this unique pair of resources by analyzing the combined data with a novel statistical method, based on the PPL statistical framework, simultaneously searching for linkage and association to loci involved in autism spectrum disorders (ASD). Our analysis also allowed for potential differences in genetic architecture for ASD in the presence or absence of lower IQ, an important clinical indicator of ASD subtypes. We found strong evidence of multiple linked loci; however, association evidence implicating specific genes was low even under the linkage peaks. Distinct loci were found in the lower IQ families, and these families showed stronger and more numerous linkage peaks, while the normal IQ group yielded the strongest association evidence. It appears that presence/absence of lower IQ (LIQ) demarcates more genetically homogeneous subgroups of ASD patients, with not just different sets of loci acting in the two groups, but possibly distinct genetic architecture between them, such that the LIQ group involves more major gene effects (amenable to linkage mapping), while the normal IQ group potentially involves more common alleles with lower penetrances. The possibility of distinct genetic architecture across subtypes of ASD has implications for further research and perhaps for research approaches to other complex disorders as well

    A novel approach of homozygous haplotype sharing identifies candidate genes in autism spectrum disorder

    Get PDF
    Autism spectrum disorder (ASD) is a highly heritable disorder of complex and heterogeneous aetiology. It is primarily characterized by altered cognitive ability including impaired language and communication skills and fundamental deficits in social reciprocity. Despite some notable successes in neuropsychiatric genetics, overall, the high heritability of ASD (~90%) remains poorly explained by common genetic risk variants. However, recent studies suggest that rare genomic variation, in particular copy number variation, may account for a significant proportion of the genetic basis of ASD. We present a large scale analysis to identify candidate genes which may contain low-frequency recessive variation contributing to ASD while taking into account the potential contribution of population differences to the genetic heterogeneity of ASD. Our strategy, homozygous haplotype (HH) mapping, aims to detect homozygous segments of identical haplotype structure that are shared at a higher frequency amongst ASD patients compared to parental controls. The analysis was performed on 1,402 Autism Genome Project trios genotyped for 1 million single nucleotide polymorphisms (SNPs). We identified 25 known and 1,218 novel ASD candidate genes in the discovery analysis including CADM2, ABHD14A, CHRFAM7A, GRIK2, GRM3, EPHA3, FGF10, KCND2, PDZK1, IMMP2L and FOXP2. Furthermore, 10 of the previously reported ASD genes and 300 of the novel candidates identified in the discovery analysis were replicated in an independent sample of 1,182 trios. Our results demonstrate that regions of HH are significantly enriched for previously reported ASD candidate genes and the observed association is independent of gene size (odds ratio 2.10). Our findings highlight the applicability of HH mapping in complex disorders such as ASD and offer an alternative approach to the analysis of genome-wide association data

    Common variants in P2RY11 are associated with narcolepsy.

    Get PDF
    Growing evidence supports the hypothesis that narcolepsy with cataplexy is an autoimmune disease. We here report genome-wide association analyses for narcolepsy with replication and fine mapping across three ethnic groups (3,406 individuals of European ancestry, 2,414 Asians and 302 African Americans). We identify a SNP in the 3' untranslated region of P2RY11, the purinergic receptor subtype P2Y₁₁ gene, which is associated with narcolepsy (rs2305795, combined P = 6.1 × 10⁻¹⁰, odds ratio = 1.28, 95% CI 1.19-1.39, n = 5689). The disease-associated allele is correlated with reduced expression of P2RY11 in CD8(+) T lymphocytes (339% reduced, P = 0.003) and natural killer (NK) cells (P = 0.031), but not in other peripheral blood mononuclear cell types. The low expression variant is also associated with reduced P2RY11-mediated resistance to ATP-induced cell death in T lymphocytes (P = 0.0007) and natural killer cells (P = 0.001). These results identify P2RY11 as an important regulator of immune-cell survival, with possible implications in narcolepsy and other autoimmune diseases.journal articleresearch support, n.i.h., extramuralresearch support, non-u.s. gov'tresearch support, u.s. gov't, p.h.s.2011 Jan2010 12 19importedErratum in : Nat Genet. 2011 Oct;43(10):1040

    Common variants in P2RY11 are associated with narcolepsy.

    Get PDF
    l e t t e r s Growing evidence supports the hypothesis that narcolepsy with cataplexy is an autoimmune disease. We here report genomewide association analyses for narcolepsy with replication and fine mapping across three ethnic groups (3,406 individuals of European ancestry, 2,414 Asians and 302 African Americans). We identify a SNP in the 3′ untranslated region of P2RY11, the purinergic receptor subtype P2Y 11 gene, which is associated with narcolepsy (rs2305795, combined P = 6.1 × 10 −10 , odds ratio = 1.28, 95% CI 1.19-1.39, n = 5689). The diseaseassociated allele is correlated with reduced expression of P2RY11 in CD8 + T lymphocytes (339% reduced, P = 0.003) and natural killer (NK) cells (P = 0.031), but not in other peripheral blood mononuclear cell types. The low expression variant is also associated with reduced P2RY11-mediated resistance to ATP-induced cell death in T lymphocytes (P = 0.0007) and natural killer cells (P = 0.001). These results identify P2RY11 as an important regulator of immune-cell survival, with possible implications in narcolepsy and other autoimmune diseases

    On the Twin Risk in Autism

    No full text
    Autism is considered by many to be the most strongly genetically influenced multifactorial childhood psychiatric disorder. In the absence of any known gene or genes, the main support for this is derived from family and twin studies. Two recent studies (Greenberg et al. 2001; Betancur et al. 2002) suggested that the twinning process itself is an important risk factor in the development of autism. If true, this would have major consequences for the interpretation of twin studies. Both studies compared the number of affected twin pairs among affected sib pairs to expected values in two separate samples of multiplex families and reported a substantial and significant excess of twin pairs. Using data from our epidemiological study in Western Australia, we investigated the possibility of an increased rate of autism in twins. All children born between 1980 and 1995 with autism, Asperger syndrome, or pervasive developmental disorder not otherwise specified (PDD-NOS) were ascertained. Of the 465 children with a diagnosis, 14 were twin births (rate 30.0/1,000) compared to 9,640 children of multiple births out of a total of 386,637 births in Western Australia between 1980 and 1995 (twin rate weighted to number of children with autism or PDD per year 26.3/1,000). These data clearly do not support twinning as a substantial risk factor in the etiology of autism. We demonstrate that the high proportion of twins found in affected-sib-pair studies can be adequately explained by the high ratio of concordance rates in monozygotic (MZ) twins versus siblings and the distribution of family size in the population studied. Our results are in agreement with those of two similar studies by Croen et al. (2002) in California and Hultman et al. (2002) in Sweden

    Genomic imprinting effects of the X chromosome on brain morphology.

    No full text
    There is increasing evidence that genomic imprinting, a process by which certain genes are expressed in a parent-of-origin-specific manner, can influence neurogenetic and psychiatric manifestations. While some data suggest possible imprinting effects of the X chromosome on physical and cognitive characteristics in humans, there is no compelling evidence that X-linked imprinting affects brain morphology. To address this issue, we investigated regional cortical volume, thickness, and surface area in 27 healthy controls and 40 prepubescent girls with Turner syndrome (TS), a condition caused by the absence of one X chromosome. Of the young girls with TS, 23 inherited their X chromosome from their mother (X(m)) and 17 from their father (X(p)). Our results confirm the existence of significant differences in brain morphology between girls with TS and controls, and reveal the presence of a putative imprinting effect among the TS groups: girls with X(p) demonstrated thicker cortex than those with X(m) in the temporal regions bilaterally, while X(m) individuals showed bilateral enlargement of gray matter volume in the superior frontal regions compared with X(p). These data suggest the existence of imprinting effects of the X chromosome that influence both cortical thickness and volume during early brain development, and help to explain variability in cognitive and behavioral manifestations of TS with regard to the parental origin of the X chromosome

    Effects of X Chromosome Monosomy and Genomic Imprinting on Observational Markers of Social Anxiety in Prepubertal Girls with Turner Syndrome.

    No full text
    Previous studies have suggested that girls with Turner syndrome (TS) exhibit symptoms of social anxiety during interactions with others. However, few studies have quantified these behaviors during naturalistic face-to-face social encounters. In this study, we coded observational markers of social anxiety in prepubertal girls with TS and age-matched controls during a 10-min social encounter with an unfamiliar examiner. Results showed that girls with TS exhibited significantly higher levels of gaze avoidance compared to controls. Impairments in social gaze were particularly increased in girls with a maternally retained X chromosome (Xm), suggesting a genomic imprinting effect. These data indicate that social gaze avoidance may be a critical behavioral marker for identifying early social dysfunction in young girls with TS
    corecore