232 research outputs found

    Casein and Caseinogen.

    Get PDF
    n/

    EPR identification of defects responsible for thermoluminescence in Cu-doped lithium tetraborate (Li2B4O7) crystals

    Get PDF
    Electron paramagnetic resonance (EPR) is used to identify the electron and hole traps responsible for thermoluminescence (TL) peaks occurring near 100 and 200 â—¦C in copper-doped lithium tetraborate (Li2B4O7) crystals. As-grown crystals have Cu+ and Cu2+ ions substituting for lithium and have Cu+ ions at interstitial sites. All of the substitutional Cu2+ ions in the as-grown crystals have an adjacent lithium vacancy and give rise to a distinct EPR spectrum. Exposure to ionizing radiation at room temperature produces a second and different Cu2+ EPR spectrum when a hole is trapped by substitutional Cu+ ions that have no nearby defects. These two Cu2+ trapped-hole centers are referred to as Cu2+-VLi and Cu2+active, respectively. Also during the irradiation, two trapped-electron centers in the form of interstitial Cu0 atoms are produced when interstitial Cu+ ions trap electrons. They are observed with EPR and are labeled Cu0A and Cu0B. When an irradiated crystal is warmed from 25 to 150 â—¦C, the Cu2+active centers have a partial decay step that correlates with the TL peak near 100 â—¦C. The concentrations of Cu0A and Cu0B centers, however, increase as the crystal is heated through this range. As the crystal is futher warmed between 150 and 250 â—¦C, the EPR signals from the Cu2+active hole centers and Cu0A and Cu0B electron centers decay simultaneously. This decay step correlates with the intense TL peak near 200 â—¦C

    EPR identification of defects responsible for thermoluminescence in Cu-doped lithium tetraborate (Li2B4O7) crystals

    Get PDF
    Electron paramagnetic resonance (EPR) is used to identify the electron and hole traps responsible for thermoluminescence (TL) peaks occurring near 100 and 200 â—¦C in copper-doped lithium tetraborate (Li2B4O7) crystals. As-grown crystals have Cu+ and Cu2+ ions substituting for lithium and have Cu+ ions at interstitial sites. All of the substitutional Cu2+ ions in the as-grown crystals have an adjacent lithium vacancy and give rise to a distinct EPR spectrum. Exposure to ionizing radiation at room temperature produces a second and different Cu2+ EPR spectrum when a hole is trapped by substitutional Cu+ ions that have no nearby defects. These two Cu2+ trapped-hole centers are referred to as Cu2+-VLi and Cu2+active, respectively. Also during the irradiation, two trapped-electron centers in the form of interstitial Cu0 atoms are produced when interstitial Cu+ ions trap electrons. They are observed with EPR and are labeled Cu0A and Cu0B. When an irradiated crystal is warmed from 25 to 150 â—¦C, the Cu2+active centers have a partial decay step that correlates with the TL peak near 100 â—¦C. The concentrations of Cu0A and Cu0B centers, however, increase as the crystal is heated through this range. As the crystal is futher warmed between 150 and 250 â—¦C, the EPR signals from the Cu2+active hole centers and Cu0A and Cu0B electron centers decay simultaneously. This decay step correlates with the intense TL peak near 200 â—¦C

    Dual Role of Sb Ions as Electron Traps and Hole Traps in Photorefractive Sn2P2S6 Crystals

    Get PDF
    Doping photorefractive single crystals of Sn2P2S6 with antimony introduces both electron and hole traps. In as-grown crystals, Sb3+ (5s2 ) ions replace Sn2+ ions. These Sb3+ ions are either isolated (with no nearby perturbing defects) or they have a chargecompensating Sn2+ vacancy at a nearest-neighbor Sn site. When illuminated with 633 nm laser light, isolated Sb3+ ions trap electrons and become Sb2+ (5s2 5p1 ) ions. In contrast, Sb3+ ions with an adjacent Sn vacancy trap holes during illumination. The hole is primarily localized on the (P2S6) 4− anionic unit next to the Sb3+ ion and Sn2+ vacancy. These trapped electrons and holes are thermally stable below ∼200 K, and they are observed with electron paramagnetic resonance (EPR) at temperatures below 150 K. Resolved hyperfine interactions with 31P, 121Sb, and 123Sb nuclei are used to establish the defect models

    Dual Role of Sb Ions as Electron Traps and Hole Traps in Photorefractive Sn\u3csub\u3e2\u3c/sub\u3eP\u3csub\u3e2\u3c/sub\u3eS\u3csub\u3e6\u3c/sub\u3e Crystals

    Get PDF
    Doping photorefractive single crystals of Sn2P2S6 with antimony introduces both electron and hole traps. In as-grown crystals, Sb3+ (5s2) ions replace Sn2+ ions. These Sb3+ ions are either isolated (with no nearby perturbing defects) or they have a charge-compensating Sn2+ vacancy at a nearest-neighbor Sn site. When illuminated with 633 nm laser light, isolated Sb3+ ions trap electrons and become Sb2+ (5s25p1) ions. In contrast, Sb3+ ions with an adjacent Sn vacancy trap holes during illumination. The hole is primarily localized on the (P2S6)4− anionic unit next to the Sb3+ ion and Sn2+ vacancy. These trapped electrons and holes are thermally stable below ∼200 K, and they are observed with electron paramagnetic resonance (EPR) at temperatures below 150 K. Resolved hyperfine interactions with 31P, 121Sb, and 123Sb nuclei are used to establish the defect models. Abstract © 2016 Optical Society of Americ

    An optical fibre rereadable radiation dosimeter for use at high doses and at elevated temperature

    No full text
    A new type of radiation dosimeter for large radiation doses is described, which is based on silica fibre material. Conventional radioluminescence or thermoluminescence of silica produces emission in the blue region of the spectrum. However, in this new material irradiation, in conjunction with a heat treatment, generates a green emission band. The intensity of the green band can be monitored by either radioluminescence or thermoluminescence using a test dose. The signals are directly related to the total irradiation history of the material. The dosimeter is therefore rereadable. The production mechanism of the green emission centre requires a thermal processing stage, with an activation energy of 0.52 eV. Further, the dosimeter is effective at recording radiation during high-temperature exposure, to at least 400°C, with the subsequent dosimetry being performed below 200°C

    Exchange Interaction and TcT_c in Alkaline-earth-metal-oxide-based DMS without Magnetic Impurities: First Principle Pseudo-SIC and Monte Carlo Calculation

    Full text link
    The prospects of half-metallic ferromagnetism being induced by the incorporation of C atoms into alkaline-earth-metal-oxides are investigated by the first principle calculation. The origin of the ferromagnetism is discussed through the calculation of the electronic structure and exchange coupling constant by using the pseudo-potential-like self-interaction-corrected local spin density method. The Curie temperature (TcT_c) is also predicted by employing the Monte Carlo simulation. It is shown that by taking the electron self-interaction into account, the half-metallic ferromagnetism induced by C in the host materials is more stabilized in comparison with the standard LDA case, and the C's 2p2p electron states in the bandgap become more localized resulting in the predominance of the short-ranged exchange interaction. While the ferromagnetism in MgO1−x_{1-x}Cx_x is stabilized due to the exchange interaction of the 1st1st-nearest neighbor pairs and might be suppressed by the anti-ferromagnetic super-exchange interaction at higher xx, the ferromagnetism in CaO1−x_{1-x}Cx_x, SrO1−x_{1-x}Cx_x, and BaO1−x_{1-x}Cx_x is stabilized by both the 1st1st- and 2nd2nd-nearest neighbor pairs, and TcT_c monotonously increases with the C concentration.Comment: 5 pages, 5 figure

    A new approach to the assessment of lumen visibility of coronary artery stent at various heart rates using 64-slice MDCT

    Get PDF
    Coronary artery stent lumen visibility was assessed as a function of cardiac movement and temporal resolution with an automated objective method using an anthropomorphic moving heart phantom. Nine different coronary stents filled with contrast fluid and surrounded by fat were scanned using 64-slice multi-detector computed tomography (MDCT) at 50–100 beats/min with the moving heart phantom. Image quality was assessed by measuring in-stent CT attenuation and by a dedicated tool in the longitudinal and axial plane. Images were scored by CT attenuation and lumen visibility and compared with theoretical scoring to analyse the effect of multi-segment reconstruction (MSR). An average increase in CT attenuation of 144 ± 59 HU and average diminished lumen visibility of 29 ± 12% was observed at higher heart rates in both planes. A negative correlation between image quality and heart rate was non-significant for the majority of measurements (P > 0.06). No improvement of image quality was observed in using MSR. In conclusion, in-stent CT attenuation increases and lumen visibility decreases at increasing heart rate. Results obtained with the automated tool show similar behaviour compared with attenuation measurements. Cardiac movement during data acquisition causes approximately twice as much blurring compared with the influence of temporal resolution on image quality
    • …
    corecore