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Hole Trapping at Al impurities in Silica: A Challenge for Density Functional Theories
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The atomic geometry and electronic structure around a neutral substitutional Al impurity in silica is
investigated using either the unrestricted Hartree-Fock (UHF) approximation, or Beckes three-parameter
hybrid functional (B3LYP). It is found that the B3LYP functional fails to describe the structural distor-
tions around the Al impurity, while the UHF results are consistent with experimental information. We
argue that the failure of the B3LYP functional is caused by the incomplete self-interaction cancellation
usually present in density functional theories.
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Density functional theory (DFT) has become a standard
tool in physics and chemistry for parameter-free total-
energy calculations for molecules and solids [1–3]. The
DFT approximation offers a considerable improvement
in accuracy (compared to experimental data) over the
Hartree-Fock (HF) approximation, while at the same time
being much more computationally efficient than extensions
of the HF method (such as configuration interaction or
Møller-Plesset perturbation theory) which are cumber-
some for molecules and not feasible at all in extended
systems. However, DFT is based on approximations
whose range of validity is difficult to estimate, and it is
therefore important to clarify the limitations of the theory
and gain inspiration for improved density functionals by a
careful study of the rare instances where the method fails.
Most known examples of DFT failure occur in systems
containing transition-metal or rare-earth elements, due to
the complicated electron correlation phenomena present
in the d or f valence shells of these elements. Even
in these cases, DFT often fails at the quantitative level
only (such as the magnitude of magnetic moments in
transition-metal oxides) [4,5] or for properties which are
not really supposed to be described by the theory (such
as excitation spectra) [6–8]. It has recently been found,
however, that DFT predicts a wrong adsorption site for CO
on a noble-metal surface [9], suggesting that the method
is more problematic in impurity problems. In the present
paper, we report a remarkable new example of DFT failure,
namely, the case of a neutral substitutional Al impurity in
silica. We shall demonstrate that DFT fails qualitatively in
predicting a structural distortion around the Al impurity,
which is correctly described in HF theory, and we shall
argue why it does so.

The neutral substitutional Al impurity in a quartz (here-
after denoted as �AlO4�0) is one of the most well-studied
states of Al in silica [10–23]. The state is observed in irra-
diated samples of natural or manufactured quartz and gives
rise to a dark coloration (“smoky quartz”). As Al has one
valence electron less than Si, the �AlO4�0 center will in-
troduce a hole in the quartz bands, which for electrostatic

reasons will be confined to the region around the Al im-
purity. Hence the center is often referred to as a “trapped
hole species.” Because of the presence of an unpaired elec-
tron the center can be detected with electron paramagnetic
resonance spectroscopy, and this technique, together with
dielectric relaxation and acoustic loss experiments, has
yielded much information about the electronic structure of
the impurity [10–13,15–17]. The picture emerging from
these investigations is that of a hole localized on one of the
four O neighbors of the Al impurity, with an accompany-
ing distortion of the lattice structure. This view was sup-
ported by early Hartree-Fock calculations on small cluster
models of the impurity, which indeed exhibited the hole lo-
calization and distortion of the AlO4 tetrahedron [18,19].
However, recent DFT calculations in a repeated supercell
geometry have provided results at variance with this pic-
ture: These calculations preserve the a-quartz symmetry,
apart from an increase in the Al-O bond length compared
to the Si-O bonds, and distribute the hole evenly over the
four O neighbors of Al [21–23]. To clarify the reasons be-
hind this surprising discrepancy between different theoreti-
cal treatments, we have performed calculations on a rather
large cluster model using two different energy function-
als: Unrestricted Hartree-Fock (UHF) and Beckes three-
parameter hybrid functional (B3LYP) [24] which is a linear
combination of UHF and DFT energies that in many situ-
ations has been found to improve the predictions of “pure”
DFT functionals [25]. The calculations were performed
using the GAUSSIAN98 code [26] on a cluster constructed
from the ideal a-quartz structure by placing the Al impu-
rity at the center and including two near-neighbor shells
of both O and Si. The resulting cluster has C2 symmetry,
which we distort before the structure is allowed to relax.
The dangling bonds of the outermost Si atoms were satu-
rated by hydrogen atoms placed at the positions of the next
O shell to mimic the crystal lattice. The hydrogens and
the outermost Si atoms were kept fixed during the struc-
tural optimizations. Different choices of boundary condi-
tions did not appear to change the results significantly. The
geometry was optimized using the 3-21G* basis set, and
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hyperfine parameters were subsequently calculated using a
6-31G* basis.

It can be seen from Table I that the B3LYP approxima-
tion yields geometrical results quite similar to those found
in repeated-cell calculations [22,23]: The O neighbors of
Al are pairwise equivalent, thus preserving C2 symmetry,
and have only minute differences in bond lengths. This is
similar to the situation in the SiO4 tetrahedrons of pure a

quartz, where the (experimental) bond lengths are 1.609
and 1.614 Å, respectively. The values for the Al-O bond
lengths are close to the repeated-cell calculation using the
PW91 energy functional [23]. The results of the UHF treat-
ment, on the other hand, are markedly different. In this
approximation one O neighbor is displaced about 0.2 Å
outward from Al, compared to the PW91 and B3LYP ge-
ometries, while the other three are pulled slightly towards
the Al impurity. This difference in geometry reflects a
difference in the electronic structure predicted by the vari-
ous approximations. As can be seen from the Mulliken
spin populations in Table II, the B3LYP approximation dis-
tributes the spin density almost evenly among the four O
neighbors of Al, while in the UHF approach, the spin is es-
sentially localized on the O atom which has been pushed
away from Al. Surface plots of the hole wave functions in
the two approximations are shown in Fig. 1. A convenient
experimental measure of the degree of hole localization
is the anisotropic 17O hyperfine coupling tensor, which is
roughly proportional to the p component of the hole wave
function on a particular O atom. In Table III the theoretical
predictions for this quantity in the various approximations
are compared to the experimental values [15]. The predic-
tions of the UHF approximation are quite accurate, while
those arising from the B3LYP calculation are off by more
than a factor of 4.

As the use of DFT approximations such as B3LYP,
PW91, or even the local density approximation usually
constitute a substantial improvement over the UHF
method, it is important to determine why they fail in
the present context. It was noted by Magagnini and co-
workers that the barrier preventing lattice distortion in their
repeated-cell calculation using the local spin-density ap-
proximation appeared to arise from the electrostatic
energy terms (Hartree and ion-ion repulsions) [22].
Intuitively this appears reasonable: The concentration
of charge density resulting from hole localization would

TABLE I. Bond lengths around the substitutional Al impurity
as calculated with either the UHF or B3LYP functionals in a
cluster model. The results labeled PW91 are from the repeated-
cell calculation of Ref. [23].

Bond UHF B3LYP PW91

Al-O(1) 1.924 Å 1.741 Å 1.720 Å
Al-O(2) 1.688 Å 1.741 Å 1.720 Å
Al-O(3) 1.703 Å 1.748 Å 1.722 Å
Al-O(4) 1.689 Å 1.748 Å 1.722 Å

be associated with a penalty in Hartree energy. However,
this represents an unphysical property of the Hartree
energy functional: A single particle does not interact with
itself. In the UHF approach the self-interaction is exactly
canceled by a corresponding self-exchange term. This is
not necessarily the case in the various DFT approaches.

To formalize the argument, we set up a minimal model
for the hole energy functional in the different approxima-
tions. The crucial point to realize is that the top of the
valence bands in the present problem consists of nonbond-
ing O 2p orbitals which are widely separated and therefore
have very small overlaps. Furthermore, they are nearly de-
generate in the absence of structural distortions. Focusing
attention on the electrons moving in the nonbonding O 2p
states, the total energy may be approximated by

E � C 1
X

i

´irii 1
1
2

X
ij

Uijriirjj 1 Exc�r� , (1)

where r is the density matrix, and i, j indexes the non-
bonding O 2p states on different sites. The ´i collects
all terms linear in r except those arising from the xc en-
ergy, and C denotes the r-independent terms. The Uij

parameters are the Coulomb integrals between 2p charge
distributions on sites i and j. The different total-energy
approximations are distinguished by different choices of
Exc. Since one hole is present in the nonbonding states, the
density matrix may be written as rij � dij 2 r̃ij , with r̃

being the hole density matrix. The total energy may then
be written

E � C̃ 1
X

i

˜́ir̃ii 1
1
2

X
ij

Uijr̃iir̃jj 1 Exc�r� , (2)

with C̃, ˜́i defined analogously to C, ´i . In the HF case,
Exc will simply be the exact exchange term, which cancels
the Hartree self-interaction, and only the first two terms
remain. Thus, in the UHF case, any structural distortion
pushing one O level above the others will lead to complete
hole localization on that level. In principle, this cancella-
tion should also occur in DFT but, as is well known, this
is not the case for the approximate functionals commonly
employed. A further complication is that the equivalence
between a hole in a filled band and an electron in an empty
band, which is inherent in the UHF equations, is lost in

TABLE II. Mulliken spin populations for Al and its nearest
neighbors in the cluster. UHF and B3LYP values have been
calculated in both the UHF and B3LYP equilibrium geometries.

UHF geometry B3LYP geometry
Atom UHF B3LYP UHF B3LYP

Al 20.03 20.04 20.14 20.05
O(1) 1.04 0.79 0.58 0.20
O(2) 0.00 0.02 0.56 0.19
O(3) 0.00 0.04 0.02 0.19
O(4) 0.01 0.09 0.02 0.19
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FIG. 1. Isodensity surfaces for the lowest unoccupied one-
particle eigenstate calculated using either the UHF (a) or the
B3LYP approximation (b), in the corresponding equilibrium ge-
ometries. Black atoms are O; grey, Si; large white, Al; and
small white, H.

DFT. A simple discussion of this point can be given in
the limit where the particle moves in a large number of
identical orbitals, and intersite Coulomb interactions can
be neglected. Putting the ´i � 0 and assuming a (semi)-
local form for Exc the energy functional separates into a
sum of local terms:

E �
X

i

µ
r2

ii
Uii

2
1 Exc�ni�

∂
, ni � riin0 , (3)

with n0 being the density of a full local orbital. Comparing
states in which the particle (electron or hole) is either lo-
calized on one site or evenly distributed over all N sites in
the system, we find in the case of an electron in an empty
band:

Eloc 2 Edeloc �
Uii

2
1 Exc�n0� � d , (4)

while in the case of a hole in a filled band

TABLE III. Principal values of the anisotropic hyperfine
coupling tensor (in Gauss) for 27Al and the 17O atom with the
highest spin population. UHF and B3LYP values have been
calculated in both the UHF and B3LYP equilibrium geometries.
Experimentally, only one 17O signal has been resolved [15].

UHF geometry B3LYP geometry
Atom UHF B3LYP UHF B3LYP Expt.

20.342 20.380 21.212 20.247 20.349
Al 20.316 20.243 20.018 20.033 20.343

0.659 0.624 1.231 0.280 0.747

289.350 272.211 254.343 218.339 285.04
O(1) 44.605 36.046 26.778 9.101 41.21

44.745 36.165 27.565 9.238 43.82

Eloc 2 Edeloc �
Uii

2
1 N

Z
dr

dExc

dn
�n0�

n0�r�
N

2 Exc�n0� . (5)

Introducing the Hartree and xc potentials, VH , Vxc as func-
tional derivatives of the corresponding energies at full oc-
cupancy this can be written as

Eloc 2 Edeloc �
Z

dr n0�r� �VH�r� 1 Vxc�r�� 2 d .

(6)

d is usually on the order of 0.1–1 eV per occupied or-
bital [27,28], whereas the term involving the potentials in
many cases can be an order of magnitude larger, as evi-
denced by the large shifts in Kohn-Sham eigenvalues oc-
curring when self-interaction corrections are enforced in
DFT [5,27]. Therefore, it must be expected that the spuri-
ous localization barrier in DFT is larger for a hole than an
electron, even when the particle moves only in a finite set
of orbitals. As the B3LYP is simply a linear combination
of UHF and DFT energies the argument should apply also
in this case, although the residual self-interactions will be
somewhat smaller than in pure DFT.

The O atoms closest to Al are separated from each other
by �2.8 Å in the relaxed B3LYP geometry. An estimate
of the hopping integrals between nonbonding O 2p states,
which were neglected in our model discussion, is provided
by the energy splitting between bonding and antibonding
p states in an O2 molecule with an internuclear distance
of 2.8 Å, treated within the PW91 approximation in which
the effective potential is purely local. We find this splitting
to be 0.12 eV, i.e., yielding an estimate for the hopping
integral of �0.06 eV, considerably lower than the expected
self-interaction error.

In order to test the validity of the above arguments the
electronic structure of the relaxed UHF geometry was re-
calculated using the B3LYP energy functional and vice
versa. The resulting Mulliken populations are also shown
in Table II. Note that even the slight deviation from
ideal tetrahedral geometry in the AlO4 unit determined by

2836



VOLUME 86, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S 26 MARCH 2001

B3LYP is sufficient to cause almost complete localization
of the spin density on the long-bonded O atoms within
the UHF approximation. On the other hand, the B3LYP
energy functional can only partly capture the hole local-
ization even when applied to the distorted atomic configu-
ration calculated by UHF. These results indicate that the
assumptions underlying our formal arguments are well jus-
tified in the present case.

It should be stressed that, although both the PW91 and
B3LYP approximations fail dramatically in the present
case, it does not mean that these methods are generally
useless in describing a single particle in a filled/empty
band. Indeed, we have obtained quite accurate values for
the hyperfine parameters of the unpaired electron in the
corresponding �PO4�0 center using the PW91 energy ap-
proximation in a repeated-cell calculation [29]. As argued
above, the �AlO4�0 center is a delicate problem because of
the fact that the unpaired spin moves in a space of weakly
coupled nearly degenerate levels. Thus, the energy scale
of the effective hole Hamiltonian is small, and the resid-
ual self-interaction present in DFT can adversely affect the
results.

In conclusion, we have shown that the B3LYP approxi-
mation to DFT is qualitatively inconsistent with experi-
ments when applied to cluster models of the �AlO4�0

impurity state in a quartz, whereas the UHF approxi-
mation captures the essential physics of the system.
Furthermore, we have argued that the failure of B3LYP is
connected with the presence of unphysical self-interactions
in these energy functionals, and that such problems are
likely to exist whenever a single particle (especially a
hole) is moving in a space of levels which are weakly
coupled and near degenerate compared to the energy scale
of the residual self-interactions in DFT. It has been noted
in other problems involving localized defect states in
ionic solids that HF theory leads to much larger structural
relaxations than DFT, but to our knowledge the role of
residual self-interactions has not been discussed in this
connection [30–32]. It seems appropriate to reconsider
these cases in light of the above analysis.

After submission of this manuscript it has come to our
attention that a similar work has recently been performed
by Pacchioni et al. [33].

The authors would like to acknowledge J. K. Nørskov
and A. Svane for useful discussions and a critical reading
of the manuscript.
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