21 research outputs found

    The Lipopolysaccharide Core of Brucella abortus Acts as a Shield Against Innate Immunity Recognition

    Get PDF
    Innate immunity recognizes bacterial molecules bearing pathogen-associated molecular patterns to launch inflammatory responses leading to the activation of adaptive immunity. However, the lipopolysaccharide (LPS) of the gram-negative bacterium Brucella lacks a marked pathogen-associated molecular pattern, and it has been postulated that this delays the development of immunity, creating a gap that is critical for the bacterium to reach the intracellular replicative niche. We found that a B. abortus mutant in the wadC gene displayed a disrupted LPS core while keeping both the LPS O-polysaccharide and lipid A. In mice, the wadC mutant induced proinflammatory responses and was attenuated. In addition, it was sensitive to killing by non-immune serum and bactericidal peptides and did not multiply in dendritic cells being targeted to lysosomal compartments. In contrast to wild type B. abortus, the wadC mutant induced dendritic cell maturation and secretion of pro-inflammatory cytokines. All these properties were reproduced by the wadC mutant purified LPS in a TLR4-dependent manner. Moreover, the core-mutated LPS displayed an increased binding to MD-2, the TLR4 co-receptor leading to subsequent increase in intracellular signaling. Here we show that Brucella escapes recognition in early stages of infection by expressing a shield against recognition by innate immunity in its LPS core and identify a novel virulence mechanism in intracellular pathogenic gram-negative bacteria. These results also encourage for an improvement in the generation of novel bacterial vaccines

    The potential interaction between time perception and gaming: a narrative review

    Get PDF
    Compromised time control is a variable of interest among disordered gamers because time spent on videogames can directly affect individuals’ lives. Although time perception appears to be closely associated with this phenomenon, previous studies have not systematically found a relationship between time perception and gaming. Therefore, the purpose of this narrative review is to explore how gaming disorder may be associated with time perception. It has been found that gamers exhibit a stronger attentional focus as well as an improved working memory compared with non-gamers. However, gamers (and especially disordered gamers) exhibit a stronger reaction to gaming cues which—coupled with an altered emotion regulation observed among disordered gamers—could directly affect their time perception. Finally, “'flow states”' direct most of the attentional resources to the ongoing activity, leading to a lack of resources allocated to the time perception. Therefore, entering a flow state will result in an altered time perception, most likely an underestimation of duration. The paper concludes that the time loss effect observed among disordered gamers can be explained via enhanced emotional reactivity (facilitated by impaired emotion regulation)

    The asymmetric distribution of the essential histidine kinase PdhS indicates a differentiation event in Brucella abortus

    No full text
    Many organisms use polar localization of signalling proteins to control developmental events in response to completion of asymmetric cell division. Asymmetric division was recently reported for Brucella abortus, a class III facultative intracellular pathogen generating two sibling cells of slightly different size. Here we characterize PdhS, a cytoplasmic histidine kinase essential for B. abortus viability and homologous to the asymmetrically distributed PleC and DivJ histidine kinases from Caulobacter crescentus. PdhS is localized at the old pole of the large cell, and after division and growth, the small cell acquires PdhS at its old pole. PdhS may therefore be considered as a differentiation marker as it labels the old pole of the large cell. Moreover, PdhS colocalizes with its paired response regulator DivK. Finally, PdhS is able to localize at one pole in other α-proteobacteria, suggesting that a polar structure associating PdhS with one pole is conserved in these bacteria. We propose that a differentiation event takes place after the completion of cytokinesis in asymmetrically dividing α-proteobacteria. Altogether, these data suggest that prokaryotic differentiation may be much more widespread than expected
    corecore