133 research outputs found

    Quality and Safety of Minimally Invasive Surgery: Past, Present, and Future

    Get PDF
    Adverse events because of medical errors are a leading cause of death in the United States (US) exceeding the mortality rates of motor vehicle accidents, breast cancer, and AIDS. Improvements can and should be made to reduce the rates of preventable surgical errors because they account for nearly half of all adverse events within hospitals. Although minimally invasive surgery (MIS) has proven patient benefits such as reduced postoperative pain and hospital stay, its operative environment imposes substantial physical and cognitive strain on the surgeon increasing the risk of error. To mitigate errors and protect patients, a multidisciplinary approach is needed to improve MIS. Clinical human factors, and biomedical engineering principles and methodologies can be used to develop and assess laparoscopic surgery instrumentation, practices, and procedures. First, the foundational understanding and the imperative to transform health care into a high-quality and safe system is discussed. Next, a generalized perspective is presented on the impact of the design and redesign of surgical technologies and processes on human performance. Finally, the future of this field and the research needed to further improve the quality and safety of MIS is discussed

    Muscular Forces and Joint Angles in Small-Handed Pianists: A Pilot Study on the 7/8 Size Keyboard versus the Full Size Keyboard

    Get PDF
    This pilot study examined whether the use of a 7/8 keyboard contributed to the physical ease of small-handed pianists in comparison with the conventional piano keyboard. A secondary research question focused on the transition from one keyboard to the other. For the purposes of this study, we adopted David Steinbuhler’s postulated hand span of 8 inches or less as defining a “small-handed” pianist. The goal was to measure muscle loading and hand span during performance of the excerpt. Data collection included each participant being monitored using electromyography via surface electrodes, which were attached to the upper back/shoulder, parts of the hand and arm, and the masseter muscle of the jaw. Subjects were also fitted with electrogoniometers to capture how the span from the first metacarpophalangeal (MCP) joint to the fifth MCP joint moved according to performance demands, as well as recording wrist flexion and extension, radial and ulnar deviation. The findings were that small-handed pianists preferred the smaller keyboard and were able to transition smoothly between it and the conventional keyboard. The maximal angle of hand span while playing a difficult piece averaged about 5º smaller on the radial side and 10º smaller on the ulnar side for the 7/8 keyboard, leading to perceived comfort (ease) and better performance as rated by the subjects

    Task analysis method for procedural training curriculum development

    Get PDF
    A central venous catheter (CVC) is an important medical tool used in critical care and emergent situations. Integral to proper care in many circumstances, insertion of a CVC introduces the risk of central line-associated blood stream infections and mechanical adverse events; proper training is important for safe CVC insertion. Cognitive task analysis (CTA) methods have been successfully implemented in the medical field to improve the training of postgraduate medical trainees, but can be very time-consuming to complete and require a significant time commitment from many subject matter experts (SMEs). Many medical procedures such as CVC insertion are linear processes with well-documented procedural steps. These linear procedures may not require a traditional CTA to gather the information necessary to create a training curriculum. Accordingly, a novel, streamlined CTA method designed primarily to collect cognitive cues for linear procedures was developed to be used by medical professionals with minimal CTA training. This new CTA methodology required fewer trained personnel, fewer interview sessions, and less time commitment from SMEs than a traditional CTA. Based on this study, a streamlined CTA methodology can be used to efficiently gather cognitive information on linear medical procedures for the creation of resident training curricula and procedural skills assessments

    Accepted and presented at The Design of Medical Devices Conference (DMD2015)

    Get PDF
    Sociometers are wearable devices that record speech patterns, body movements, user proximities, and face-to-face interactions [1], see The potential of these devices has not been tested in unstructured and more complex environments. Research is needed to compare sociometers data against gold standards to understand their limitations and potential. The objective of this paper is to understand the limitations and potential of sociometer devices in a live in situ field disaster preparedness simulation (1) with field observation notes to see if sociometers can capture macrolevel interactions; and (2) to video recorded (ground truth) interactions to test the granularity and accuracy of sociometer data. These results may facilitate use of sociometers in similar chaotic environments with complexity and uncertainty such as the emergency department. Methods The study was conducted in a dynamic disaster preparedness simulation environment involving over 150 actors and community participants for a total of 3.4 hr Five participants from the aid station and two observers wore sociometers around the neck Each sociometer device contained a WT12 Bluetooth module Comparison of interaction data was conducted using two methods. First, observer-O1 recorded major activities real-time using an electronic tablet application. Second method compared sociometer data with a 15 min video recording of a debrief session where the group primarily remained stationary in a circle with occasionally movement observed for LD, MM, and O

    Радиолокационное сечение рассеяния летательных аппаратов

    Get PDF
    Тез. докл. Междунар. науч.-техн. конф. (науч. чтения, посвящ. П. О. Сухому), Гомель, 4-6 июля. 2002 г

    The effect of forearm posture on wrist flexion in computer workers with chronic upper extremity musculoskeletal disorders

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Occupational computer use has been associated with upper extremity musculoskeletal disorders (UEMSDs), but the etiology and pathophysiology of some of these disorders are poorly understood. Various theories attribute the symptoms to biomechanical and/or psychosocial stressors. The results of several clinical studies suggest that elevated antagonist muscle tension may be a biomechanical stress factor. Affected computer users often exhibit limited wrist range of motion, particularly wrist flexion, which has been attributed to increased extensor muscle tension, rather than to pain symptoms. Recreational or domestic activities requiring extremes of wrist flexion may produce injurious stress on the wrist joint and muscles, the symptoms of which are then exacerbated by computer use. As these activities may involve a variety of forearm postures, we examined whether changes in forearm posture have an effect on pain reports during wrist flexion, or whether pain would have a limiting effect on flexion angle.</p> <p>Methods</p> <p>We measured maximum active wrist flexion using a goniometer with the forearm supported in the prone, neutral, and supine postures. Data was obtained from 5 subjects with UEMSDs attributed to computer use and from 13 control subjects.</p> <p>Results</p> <p>The UEMSD group exhibited significantly restricted wrist flexion compared to the control group in both wrists at all forearm postures with the exception of the non-dominant wrist with the forearm prone. In both groups, maximum active wrist flexion decreased at the supine forearm posture compared to the prone posture. No UEMSD subjects reported an increase in pain symptoms during testing.</p> <p>Conclusion</p> <p>The UEMSD group exhibited reduced wrist flexion compared to controls that did not appear to be pain related. A supine forearm posture reduced wrist flexion in both groups, but the reduction was approximately 100% greater in the UEMSD group. The effect of a supine forearm posture on wrist flexion is consistent with known biomechanical changes in the distal extensor carpi ulnaris tendon that occur with forearm supination. We infer from these results that wrist extensor muscle passive tension may be elevated in UEMSD subjects compared to controls, particularly in the extensor carpi ulnaris muscle. Measuring wrist flexion at the supine forearm posture may highlight flexion restrictions that are not otherwise apparent.</p
    corecore