25 research outputs found

    Artistic Control with Sampling for Liquid Simulations

    Get PDF
    Fluids such as gases and liquids are often animated through physically based techniques rather than manually. While this method can generate highly detailed fluids without tedious work from an artist, it also diminishes the amount of control an artist has over the end simulation. One proposed solution to this problem is to provide a low resolution preview to allow an artist to visualize a potential simulation before committing to a final, high resolution animation. However, increasing the resolution will also result in non-negligible differences between the preview and final versions of a fluid animation. A potential technique to combat this problem is match point sampling. In this scheme, match points are placed in regions of interest and are used as a guideline to force the fluid in that region to conform to how it behaved during its preview stage. This method has shown promising results, but its development has been limited to grid-based Eulerian simulations, which are primarily utilized for gas simulations. This work focuses on adapting the original sampling technique for use in particle-based Lagrangian simulations, which are primarily used for liquid simulations. Specifically, we investigate different methods of distributing and moving match points through three-dimensional space in the absence of a fixed grid and evaluate their efficacy by examining any differences between the preview and final versions of different liquid simulations

    The incidence and make up of ability grouped sets in the UK primary school

    Get PDF
    The adoption of setting in the primary school (pupils ability grouped across classes for particular subjects) emerged during the 1990s as a means to raise standards. Recent research based on 8875 children in the Millennium Cohort Study showed that 25.8% of children in Year 2 were set for literacy and mathematics and a further 11.2% of children were set for mathematics or literacy alone. Logistic regression analysis showed that the best predictors of being in the top set for literacy or mathematics were whether the child was born in the Autumn or Winter and cognitive ability scores. Boys were significantly more likely than girls to be in the bottom literacy set. Family circumstances held less importance for setting placement compared with the child’s own characteristics, although they were more important in relation to bottom set placement. Children in bottom sets were significantly more likely to be part of a long-term single parent household, have experienced poverty, and not to have a mother with qualifications at NVQ3 or higher levels. The findings are discussed in relation to earlier research and the implications for schools are set out

    A regional (land–ocean) comparison of the seasonal to decadal variability of the Northern Hemisphere jet stream 1871–2011

    Get PDF
    Seasonal to decadal variations in Northern Hemisphere jet stream latitude and speed over land (Eurasia, North America) and oceanic (North Atlantic, North Pacific) regions are presented for the period 1871–2011 from the Twentieth Century Reanalysis dataset. Significant regional differences are seen on seasonal to decadal timescales. Seasonally, the jet latitude range is lower over the oceans compared to land, reduced from 20° over Eurasia to 10° over the North Atlantic where the ocean meridional heat transport is greatest. The mean jet latitude range is at a minimum in winter (DJF), particularly along the western boundary of the North Pacific and North Atlantic, where the land-sea contrast and SST gradients are strongest. The 141-year trends in jet latitude and speed show differences on a regional basis. The North Atlantic has significant increasing jet latitude trends in all seasons, up to 3° in winter. Eurasia has significant increasing trends in winter and summer, however, no increase is seen across the North Pacific or North America. Jet speed shows significant increases evident in winter (up to 4.7 ms−1), spring and autumn over the North Atlantic, Eurasia and North America however, over the North Pacific no increase is observed. Long term trends are generally overlaid by multidecadal variability, particularly evident in the North Pacific, where 20-year variability in jet latitude and jet speed are seen, associated with the Pacific Decadal Oscillation which explains 50% of the winter variance in jet latitude since 1940. The results highlight that northern hemisphere jet variability and trends differ on a regional basis (North Atlantic, North Pacific, Eurasia and North America) on seasonal to decadal timescales, suggesting that different mechanisms are influencing the jet latitude and speed. This is important from a climate modelling perspective and for climate predictions in the near and longer term

    Increasing tropical cyclone intensity and potential intensity in the subtropical Atlantic around Bermuda from an ocean heat content perspective 1955- 2019

    Get PDF
    We investigate tropical cyclone (TC) activity and intensity within a 100km radius of Bermuda between 1955 and 2019. The results show a more easterly genesis over time and significant increasing trends in tropical cyclone intensity (maximum wind speed (Vmax)) with a decadal Vmax median value increase of 30kts from 33 to 63kts (r=0.94, p=0.02), together with significant increasing August, September, October (ASO) sea surface temperature (SST) of 1.1°C (0.17°C per decade) r= 0.4 (p<0.01) and increasing average ocean temperature between 0.5–0.7°C (0.08-0.1°C per decade) r=0.3(p<0.01) in the depth range 0-300m. The strongest correlation is found between TC intensity and ocean temperature averaged through the top 50m ocean layer (T50m ) r=0.37 (p<0.01). We show how tropical cyclone potential intensity estimates are closer to actual intensity by using T50m as opposed to SST using the Bermuda Atlantic Timeseries Hydrostation S dataset. We modify the widely used sea surface temperature potential intensity index by using T50m to provide a closer estimate of the observed minimum sea level pressure (MSLP), and associated Vmax than by using SST, creating a T50m potential intensity (T50m_PI) index. The average MSLP difference is reduced by 12mb and proportional (r=0.74, p<0.01) to the SST/(T50m ) temperature difference. We also suggest the index could be used over a wider area of the subtropical/tropical Atlantic where there is a shallow mixed layer depth

    Ocean precursors to the extreme Atlantic 2017 hurricane season

    Get PDF
    Active Atlantic hurricane seasons are favoured by positive precursor sea surface temperature anomalies (SSTA) in the main development region (MDR, 10–20°N, 20–80°W). Here, we identify a different driving mechanism for these anomalies in 2017 (most costly season on record) compared to the recent active 2005 and 2010 seasons. In 2005 and 2010, a weakened Atlantic Meridional Overturning Circulation is the primary driver of positive SSTA. However, in 2017, reduced wind-driven cold water upwelling and weaker surface net heat loss in the north-eastern MDR were the main drivers. Our results are the first to show that air-sea heat flux and wind stress related processes are important in generating precursor positive SSTAs and that these processes were active pre-determinants of the 2017 season severity. In contrast to other strong seasons, positive SSTA developed later in 2017 (between April and July rather than March) compounding the challenge of predicting Atlantic hurricane season severity

    The relationship between sea surface temperature anomalies, wind and translation speed and North Atlantic tropical cyclone rainfall over ocean and land

    Get PDF
    There have been increasing losses from freshwater flooding associated with United States (US) landfalling hurricanes in recent years. This study analyses the relationship between sea surface temperature anomalies (SSTA), wind and translation speed and North Atlantic tropical cyclone precipitation (TCP) for the period 1998-2017. Based on our statistical analysis of observation data, for a 1 °C SST increase in the main development region (MDR), there is a 6% increase (not statistically significant) in the TCP rate (mmhr−1) over the Atlantic, which rises to over 40% over land (US states) and appears linked not only to the Clausius-Clapeyron relationship but also to the increase in tropical cyclone (TC) intensity associated with increasing SSTA. Total annual TCP is significantly correlated with the SST in the MDR. Over the Atlantic there is an increase of 116% and over land there is an increase of 140% in total TCP for a 1 °C rise in SST in the MDR. Again, this is linked to the increase in windspeed and the number of TC tracks which also rises with positive SSTAs in the MDR. Our analysis of landfalling TC tracks for nine US states provides a systematic review and highlights how TCP varies by US state. The highest number of landfalls per year are found in Florida, North Carolina and Texas. The median tropical cyclone translation speed is 20.3kmhr−1, although this falls to 16.5 kmhr−1 over land and there is a latitudinal dependence on translation speed. Overall, we find a different TCP response to rising SST over the ocean and land, with the response over land over four times more than the Clausius-Clapeyron rate. The links between SSTA in the MDR and both TCP rate and annual total TCP provide useful insights for seasonal to decadal US flood prediction from TCs

    Model-observation and reanalyses comparison at key locations for heat transport to the Arctic: Assessment of key lower latitude influences on the Arctic and their simulation

    Get PDF
    Blue-Action Work Package 2 (WP2) focuses on lower latitude drivers of Arctic change, with a focus on the influence of the Atlantic Ocean and atmosphere on the Arctic. In particular, warm water travels from the Atlantic, across the Greenland-Scotland ridge, through the Norwegian Sea towards the Arctic. A large proportion of the heat transported northwards by the ocean is released to the atmosphere and carried eastward towards Europe by the prevailing westerly winds. This is an important contribution to northwestern Europe's mild climate. The remaining heat travels north into the Arctic. Variations in the amount of heat transported into the Arctic will influence the long term climate of the Northern Hemisphere. Here we assess how well the state of the art coupled climate models estimate this northwards transport of heat in the ocean, and how the atmospheric heat transport varies with changes in the ocean heat transport. We seek to improve the ocean monitoring systems that are in place by introducing measurements from ocean gliders, Argo floats and satellites. These state of the art computer simulations are evaluated by comparison with key trans-Atlantic observations. In addition to the coupled models ‘ocean-only’ evaluations are made. In general the coupled model simulations have too much heat going into the Arctic region and the transports have too much variability. The models generally reproduce the variability of the Atlantic Meridional Ocean Circulation (AMOC) well. All models in this study have a too strong southwards transport of freshwater at 26°N in the North Atlantic, but the divergence between 26°N and Bering Straits is generally reproduced really well in all the models. Altimetry from satellites have been used to reconstruct the ocean circulation 26°N in the Atlantic, over the Greenland Scotland Ridge and alongside ship based observations along the GO-SHIP OVIDE Section. Although it is still a challenge to estimate the ocean circulation at 26°N without using the RAPID 26°N array, satellites can be used to reconstruct the longer term ocean signal. The OSNAP project measures the oceanic transport of heat across a section which stretches from Canada to the UK, via Greenland. The project has used ocean gliders to great success to measure the transport on the eastern side of the array. Every 10 days up to 4000 Argo floats measure temperature and salinity in the top 2000m of the ocean, away from ocean boundaries, and report back the measurements via satellite. These data are employed at 26°N in the Atlantic to enable the calculation of the heat and freshwater transports. As explained above, both ocean and atmosphere carry vast amounts of heat poleward in the Atlantic. In the long term average the Atlantic ocean releases large amounts of heat to the atmosphere between the subtropical and subpolar regions, heat which is then carried by the atmosphere to western Europe and the Arctic. On shorter timescales, interannual to decadal, the amounts of heat carried by ocean and atmosphere vary considerably. An important question is whether the total amount of heat transported, atmosphere plus ocean, remains roughly constant, whether significant amounts of heat are gained or lost from space and how the relative amount transported by the atmosphere and ocean change with time. This is an important distinction because the same amount of anomalous heat transport will have very different effects depending on whether it is transported by ocean or the atmosphere. For example the effects on Arctic sea ice will depend very much on whether the surface of the ice experiences anomalous warming by the atmosphere versus the base of the ice experiencing anomalous warming from the ocean. In Blue-Action we investigated the relationship between atmospheric and oceanic heat transports at key locations corresponding to the positions of observational arrays (RAPID at 26°N, OSNAP at ~55N, and the Denmark Strait, Iceland-Scotland Ridge and Davis Strait at ~67N) in a number of cutting edge high resolution coupled ocean-atmosphere simulations. We split the analysis into two different timescales, interannual to decadal (1-10 years) and multidecadal (greater than 10 years). In the 1-10 year case, the relationship between ocean and atmosphere transports is complex, but a robust result is that although there is little local correlation between oceanic and atmospheric heat transports, Correlations do occur at different latitudes. Thus increased oceanic heat transport at 26°N is accompanied by reduced heat transport at ~50N and a longitudinal shift in the location of atmospheric flow of heat into the Arctic. Conversely, on longer timescales, there appears to be a much stronger local compensation between oceanic and atmospheric heat transport i.e. Bjerknes compensation

    The impact of immediate breast reconstruction on the time to delivery of adjuvant therapy: the iBRA-2 study

    Get PDF
    Background: Immediate breast reconstruction (IBR) is routinely offered to improve quality-of-life for women requiring mastectomy, but there are concerns that more complex surgery may delay adjuvant oncological treatments and compromise long-term outcomes. High-quality evidence is lacking. The iBRA-2 study aimed to investigate the impact of IBR on time to adjuvant therapy. Methods: Consecutive women undergoing mastectomy ± IBR for breast cancer July–December, 2016 were included. Patient demographics, operative, oncological and complication data were collected. Time from last definitive cancer surgery to first adjuvant treatment for patients undergoing mastectomy ± IBR were compared and risk factors associated with delays explored. Results: A total of 2540 patients were recruited from 76 centres; 1008 (39.7%) underwent IBR (implant-only [n = 675, 26.6%]; pedicled flaps [n = 105,4.1%] and free-flaps [n = 228, 8.9%]). Complications requiring re-admission or re-operation were significantly more common in patients undergoing IBR than those receiving mastectomy. Adjuvant chemotherapy or radiotherapy was required by 1235 (48.6%) patients. No clinically significant differences were seen in time to adjuvant therapy between patient groups but major complications irrespective of surgery received were significantly associated with treatment delays. Conclusions: IBR does not result in clinically significant delays to adjuvant therapy, but post-operative complications are associated with treatment delays. Strategies to minimise complications, including careful patient selection, are required to improve outcomes for patients

    The impact of Atlantic Ocean variability on North Atlantic storminess and the Northern Hemisphere Jet Stream

    No full text
    Tropical cyclones (TC)s are a major natural hazard and the jet stream is closely linked to mid-latitude storm activity. Both TCs and the jet stream can therefore have a significant impact on society, yet the extent to which ocean variability impacts on TCs and the jet stream is far from understood. This thesis aims to improve understanding of when and how the ocean modulates storm activity. The emphasis is on how airsea interactions and variability of the Atlantic Ocean circulation impact on the frequency and intensity of tropical cyclones, together with the ocean influence on the northern hemisphere jet stream. Ocean drivers of recent active Atlantic hurricane seasons are found to take two forms: late winter changes in the ocean circulation related to a reduced Atlantic Meridional Overturning Circulation and late spring/early summer changes in the airsea heat flux. Over the Atlantic, the TC rainfall rate (mm/hr) increases by 6% for a 1°C SST rise in the Main Development Region (MDR). Over land, however, the rainfall rate increases by over 30% for a 1°C rise in SST in the MDR and appears linked mainly to the increase in TC wind speed. In the subtropical Atlantic, around Bermuda, average TC intensity is found to be increasing at 5kts per decade linked to rising ocean temperatures in the region. The prediction of TC potential intensity is also found to be closer to actual intensity using the average temperature through the top 50m layer (!"# %%%%%%) as opposed to SST, with the improvement proportional to the SST - !"# %%%%%% temperature difference. For the northern hemisphere jet stream, the ocean acts to reduce the seasonal range of jet latitude variability, particularly over the North Atlantic where the oceanic Meridional Heat Transport (MHT) is greatest. Interannual to decadal variability in jet latitude and speed is most evident in the North Pacific in winter where the Pacific Decadal Oscillation explains 50% of the variance in jet latitude since 1940. On multidecadal timescales trends vary significantly on a regional basis. The largest increasing trends in jet latitude and jet speed are observed in the North Atlantic, with increases in winter of 3° and 4.5ms-1, respectively. There are no trends in jet latitude or speed over the North Pacific
    corecore