2,025 research outputs found
Formation of superconducting yttrium barium copper oxide using sulphur-containing templates
The formation of yttrium barium copper oxide (YBCO) via biotemplated routes is often plagued by unwanted stable intermediates, some of which arise from the template itself. Here we describe a method which allows sulphur-containing templates, such as proteins, to form superconducting YBCO which would have hitherto resulted in non-superconducting sulphated phases
Generation of vortices and observation of Quantum Turbulence in an oscillating Bose-Einstein Condensate
We report on the experimental observation of vortex formation and production
of tangled vortex distribution in an atomic BEC of Rb-87 atoms submitted to an
external oscillatory perturbation. The oscillatory perturbations start by
exciting quadrupolar and scissors modes of the condensate. Then regular
vortices are observed finally evolving to a vortex tangle configuration. The
vortex tangle is a signature of the presence of a turbulent regime in the
cloud. We also show that this turbulent cloud has suppression of the aspect
ratio inversion typically observed in quantum degenerate bosonic gases during
free expansion.Comment: to appear in JLTP - QFS 200
Geospatial analysis and living urban geometry
This essay outlines how to incorporate morphological rules within the exigencies of our technological age. We propose using the current evolution of GIS (Geographical Information Systems) technologies beyond their original representational domain, towards predictive and dynamic spatial models that help in constructing the new discipline of "urban seeding". We condemn the high-rise tower block as an unsuitable typology for a living city, and propose to re-establish human-scale urban fabric that resembles the traditional city. Pedestrian presence, density, and movement all reveal that open space between modernist buildings is not urban at all, but neither is the open space found in today's sprawling suburbs. True urban space contains and encourages pedestrian interactions, and has to be designed and built according to specific rules. The opposition between traditional self-organized versus modernist planned cities challenges the very core of the urban planning discipline. Planning has to be re-framed from being a tool creating a fixed future to become a visionary adaptive tool of dynamic states in evolution
Experimental Constraints on Heavy Fermions in Higgsless Models
Using an effective Lagrangian approach we analyze a generic Higgsless model
with composite heavy fermions, transforming as SU(2)_{L+R} Doublets. Assuming
that the Standard Model fermions acquire mass through mixing with the new heavy
fermions, we constrain the free parameters of the effective Lagrangian studying
Flavour Changing Neutral Current processes. In so doing we obtain bounds that
can be applied to a wide range of models characterized by the same fermion
mixing hypothesis.Comment: 23 pages, 10 figure
The little flavons
Fermion masses and mixing matrices can be described in terms of spontaneously
broken (global or gauge) flavor symmetries. We propose a little-Higgs inspired
scenario in which an SU(2)xU(1) gauge flavor symmetry is spontaneously (and
completely) broken by the vacuum of the dynamically induced potential for two
scalar doublets (the flavons) which are pseudo-Goldstone bosons remaining after
the spontaneous breaking--at a scale between 10 and 100 TeV--of an approximate
SU(6) global symmetry. The vacuum expectation values of the flavons give rise
to the texture in the fermion mass matrices. We discuss in detail the case of
leptons. Light-neutrino masses arise by means of a see-saw-like mechanism that
takes place at the same scale at which the SU(6) global symmetry is broken. We
show that without any fine tuning of the parameters the experimental values of
the charged-lepton masses,the neutrino square mass differences and the
Pontecorvo-Maki-Nakagawa-Sakata mixing matrix are reproduced.Comment: 13 pages, revTeX4. Version to be published in PR
Scalar perturbation spectra from warm inflation
We present a numerical integration of the cosmological scalar perturbation
equations in warm inflation. The initial conditions are provided by a
discussion of the thermal fluctuations of an inflaton field and thermal
radiation using a combination of thermal field theory and thermodynamics. The
perturbation equations include the effects of a damping coefficient
and a thermodynamic potential . We give an analytic expression for the
spectral index of scalar fluctuations in terms of a new slow-roll parameter
constructed from . A series of toy models, inspired by spontaneous
symmetry breaking and a known form of the damping coefficient, lead to a
spectrum with on large scales and on small scales.Comment: 12 pages, 5 figures, RevTeX 4, revised with extra figure
Fermion Masses and Mixings in the Little Flavon Model
We present a complete analysis of the fermion masses and mixing matrices in
the framework of the little flavon model. In this model textures are generated
by coupling the fermions to scalar fields, the little flavons, that are
pseudo-Goldstone bosons of the breaking of a global SU(6) symmetry. The Yukawa
couplings arise from the vacuum expectation values of the flavon fields, their
sizes controlled by a potential a la Coleman-Weinberg. Quark and lepton mass
hierarchies and mixing angles are accomodated within the effective approach in
a natural manner.Comment: 11 pages, RevTeX4, version to appear on Phys. Rev.
Unitarity bounds on low scale quantum gravity
We study the unitarity of models with low scale quantum gravity both in four
dimensions and in models with a large extra-dimensional volume. We find that
models with low scale quantum gravity have problems with unitarity below the
scale at which gravity becomes strong. An important consequence of our work is
that their first signal at the Large Hadron Collider would not be of a
gravitational nature such as graviton emission or small black holes, but rather
linked to the mechanism which fixes the unitarity problem. We also study models
with scalar fields with non minimal couplings to the Ricci scalar. We consider
the strength of gravity in these models and study the consequences for
inflation models with non-minimally coupled scalar fields. We show that a
single scalar field with a large non-minimal coupling can lower the Planck mass
in the TeV region. In that model, it is possible to lower the scale at which
gravity becomes strong down to 14 TeV without violating unitarity below that
scale.Comment: 15 page
What can we learn from neutrinoless double beta decay experiments?
We assess how well next generation neutrinoless double beta decay and normal
neutrino beta decay experiments can answer four fundamental questions. 1) If
neutrinoless double beta decay searches do not detect a signal, and if the
spectrum is known to be inverted hierarchy, can we conclude that neutrinos are
Dirac particles? 2) If neutrinoless double beta decay searches are negative and
a next generation ordinary beta decay experiment detects the neutrino mass
scale, can we conclude that neutrinos are Dirac particles? 3) If neutrinoless
double beta decay is observed with a large neutrino mass element, what is the
total mass in neutrinos? 4) If neutrinoless double beta decay is observed but
next generation beta decay searches for a neutrino mass only set a mass upper
limit, can we establish whether the mass hierarchy is normal or inverted? We
base our answers on the expected performance of next generation neutrinoless
double beta decay experiments and on simulations of the accuracy of
calculations of nuclear matrix elements.Comment: Added reference
- …
