15,817 research outputs found

    Perfectionism and burnout in canoe polo and kayak slalom athletes: The mediating influence of validation and growth-seeking

    Get PDF
    Recent research suggests that validation-seeking and dimensions of perfectionism may be antecedents of athlete burnout. The present investigation examined whether validation and growth-seeking mediate the relationship between selforiented and socially prescribed perfectionism and burnout. One-hundred and fifty canoe polo and kayak slalom athletes recruited from the top two divisions in the UK completed measures of validation and growth-seeking (GOI), perfectionism (HMPS), and athlete burnout (ABQ). Analyses supported the mediating role of validation-seeking in the relationship between socially prescribed perfectionism and burnout. However, while bivariate correlations indicated that self-oriented perfectionism was positively related to both validation and growth-seeking, neither mediated the self-oriented perfectionism-burnout relationship. The findings suggest that validation-seeking may be an important psychological factor in the development of burnout for athletes exhibiting high levels of socially prescribed perfectionism. The relationship between self-oriented perfectionism and athlete burnout remains unclear because of its association with multiple motives and with socially prescribed perfectionism

    Modern seawater acidification: The response of foraminifera to high-CO<inf>2</inf> conditions in the Mediterranean Sea

    Get PDF
    The seas around the island of Ischia (Italy) have a lowered pH as a result of volcanic gas vents that emit carbon dioxide from the sea floor at ambient seawater temperatures. These areas of acidified seawater provide natural laboratories in which to study the long-term biological response to rising CO2 levels. Benthic foraminifera (single-celled protists) are particularly interesting as they have short life histories, are environmentally sensitive and have an excellent fossil record. Here, we examine changes in foraminiferal assemblages along pH gradients at CO2 vents on the coast of Ischia and show that the foraminiferal distribution, diversity and nature of the fauna change markedly in the living assemblages as pH decreases. Ā© 2010 Geological Society of London

    Mapping radiation-induced defects in CCDs through space and time

    Get PDF
    The Charge Coupled Device (CCD) has long been the detector of choice for many space-based applications. The CCD converts the signal X-rays or visible light into electrons (n-channel devices) or holes (p-channel devices) which are stored in the pixel structure during integration until the subsequent transfer of the charge packets through the device to be read out. The transfer of this signal charge is, however, not a perfect process. Throughout the lifetime of a space-based mission the detector will be bombarded by high-energy particles and gamma rays. As time progresses, the radiation will damage the detectors, causing the Charge Transfer Efficiency (CTE) to decrease due to the creation of defects or ā€œtrapsā€ in the silicon lattice of the detector. The defects create additional energy levels between the valence and conduction band in the silicon of the detector. Electrons or holes (for n-channel or p-channel devices respectively) that pass over the defect sites may be trapped. The trapped electrons or holes will later be emitted from the traps, subject to an emission-time constant related to the energy level of the associated defect. The capture and emission of charge from the signal leads to a characteristic trailing or ā€œsmearingā€ of images that must be corrected to enable the science goals of a mission to be met. Over the past few years, great strides have been taken in the development of the pocket-pumping (or strictly-speaking ā€œtrap pumpingā€) technique. This technique not only allows individual defects (or traps) within the device to be located to the sub-pixel level, but it enables the investigation of the trap parameters such as the emission time constant to new levels of accuracy. Recent publications have shown the power of this technique in characterising a variety of different defects in both n- and p-channel devices and the potential for use in correction techniques, however, we are now exploring not only the trap locations and properties but the life cycle of these traps through time after irradiation. In orbit, most devices will be operating cold to suppress dark current and the devices are therefore cold whilst undergoing damage from the radiation environment. The mobility of defects varies as a function of temperature such that the mix of defects present following a cryogenic irradiation may vary significantly from that found following a room temperature irradiation or after annealing. It is therefore essential to study the trap formation and migration in orbit-like conditions and over longer timescales. In this paper we present a selection of the latest methods and results in the trap pumping of n- and p-channel devices and demonstrate how this technique now allows us to map radiation-induced defects in CCDs through both space and time. Ā© (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    Simplified charge transfer inefficiency correction in CCDs by trap-pumping

    Get PDF
    A major concern when using Charge-Coupled Devices in hostile radiation environments is radiation induced Charge Transfer Inefficiency. The displacement damage from non-ionising radiation incident on the detector creates defects within the silicon lattice, these defects can capture and hold charge for a period of time dependent on the operating temperature and the type of defect, or ā€œtrap speciesā€. The location and type of defect can be determined to a high degree of precision using the trap-pumping technique, whereby background charges are input and then shuffled forwards and backwards between pixels many times and repeated using different transfer timings to promote resonant charge-pumping at particular defect sites. Where the charge transfer timings used in the trap-pumping process are equivalent to the nominal CCD readout modes, a simple ā€œtrap-mapā€ of the defects that will most likely contribute to charge transfer inefficiency in the CCD array can be quickly generated. This paper describes a concept for how such a ā€œtrap-mapā€ can be used to correct images subject to non-ionising radiation damage and provides initial results from an analytical algorithm and our recommendations for future developments

    Evolution of proton-induced defects in a cryogenically irradiated p-channel CCD

    Get PDF
    P-channel CCDs have been shown to display improved tolerance to radiation-induced charge transfer inefficiency (CTI) when compared to n-channel CCDs. This is attributed to the properties of the dominant charge-trapping defect species in p-channel silicon relative to the operating conditions of the CCD. However, precise knowledge of defect parameters is required in order to correct for any induced CTI. The method of single trap-pumping allows us to analyse the defect parameters to a degree of accuracy that cannot be achieved with other common defect analysis techniques such as deep-level transient spectroscopy (DLTS). We have analysed using this method the defect distribution in an e2v p-channel CCD204 irradiated with protons at cryogenic temperature (153K). The dominant charge trapping defects at these conditions have been identified as the donor level of the silicon divacancy and the carbon interstitial defect. The defect parameters are analysed both immediately post irradiation and following several subsequent room-temperature anneal phases. The evolution of the defect distribution over time and through each anneal phase provides insight into defect interactions and mobility post-irradiation. The results demonstrate the importance of cryogenic irradiation and annealing studies, with large variations seen in the defect distribution when compared to a device irradiated at room-temperature, which is the current standard procedure for radiation testing

    High-temperature scaling limit for directed polymers on a hierarchical lattice with bond disorder

    Full text link
    Diamond "lattices" are sequences of recursively-defined graphs that provide a network of directed pathways between two fixed root nodes, AA and BB. The construction recipe for diamond graphs depends on a branching number bāˆˆNb\in \mathbb{N} and a segmenting number sāˆˆNs\in \mathbb{N}, for which a larger value of the ratio s/bs/b intuitively corresponds to more opportunities for intersections between two randomly chosen paths. By attaching i.i.d. random variables to the bonds of the graphs, I construct a random Gibbs measure on the set of directed paths by assigning each path an "energy" given by summing the random variables along the path. For the case b=sb=s, I propose a scaling regime in which the temperature grows along with the number of hierarchical layers of the graphs, and the partition function (the normalization factor of the Gibbs measure) appears to converge in law. I prove that all of the positive integer moments of the partition function converge in this limiting regime. The motivation of this work is to prove a functional limit theorem that is analogous to a previous result obtained in the b<sb<s case.Comment: 28 pages, 1 figur

    In situ trap properties in CCDs: the donor level of the silicon divacancy

    Get PDF
    The silicon divacancy is one of the main defects of concern in radiation damage studies of Charge-Coupled Devices (CCDs) and, being immobile at room temperature, the defect is accessible to a variety of characterisation techniques. As such, there is a large amount of (often conflicting) information in the literature regarding this defect. Here we study the donor level of the divacancy, one of three energy levels which lie between the silicon valence and conduction bands. The donor level of the divacancy acts as a trap for holes in silicon and therefore can be studied through the use of a p-channel CCD. The method of trap-pumping, linked closely to the process of pocket-pumping, has been demonstrated in the literature over the last two years to allow for in-situ analysis of defects in the silicon of CCDs. However, most work so far has been a demonstartion [sic] of the techinique [sic]. We begin here to use the technique for detailed studies of a specific defect centre in silicon, the donor level of the divacancy. The trap density post-irradiation can be found, and each instance of the trap identified independently of all others. Through the study of the trap response at different clocking frequencies one can measure directly the defect emission time constant, and through tracking this at different temperatures, it is possible to use Shockley-Read-Hall theory to calculate the trap energy level and cross-section. A large population of traps, all with parameters consistent with the donor level of the divacancy, has been studied, leading to a measure of the distribution of properties. The emission time constant, energy level and cross-section are found to have relatively large spreads, significantly beyond the small uncertainty in the measurement technique. This spread has major implications on the correction of charge transfer inefficiency effects in space applications in which high precision is required

    Characterization of the CBC2 readout ASIC for the CMS strip-tracker high-luminosity upgrade

    Get PDF
    The CMS Binary Chip 2 (CBC2) is a full-scale prototype ASIC developed for the front-end readout of the high-luminosity upgrade of the CMS silicon strip tracker. The 254-channel, 130 nm CMOS ASIC is designed for the binary readout of double-layer modules, and features cluster-width discrimination and coincidence logic for detecting high-PT track candidates. The chip was delivered in January 2013 and has since been bump-bonded to a dual-chip hybrid and extensively tested. The CBC2 is fully functional and working to specification: we present the result of electrical characterization of the chip, including gain, noise, threshold scan and power consumption, together with the performance of the stub finding logic. Finally we will outline the plan for future developments towards the production version

    Evolution and impact of defects in a p-channel CCD after cryogenic proton-irradiation

    Get PDF
    P-channel CCDs have been shown to display improved tolerance to radiation-induced charge transfer inefficiency (CTI) when compared to n-channel CCDs. However, the defect distribution formed during irradiation is expected to be temperature dependent due to the differences in lattice energy caused by a temperature change. This has been tested through defect analysis of two p-channel e2v CCD204 devices, one irradiated at room temperature and one at a cryogenic temperature (153K). Analysis is performed using the method of single trap pumping. The dominant charge trapping defects at these conditions have been identified as the donor level of the silicon divacancy and the carbon interstitial defect. The defect parameters are analysed both immediately post irradiation and following several subsequent room-temperature anneal phases up until a cumulative anneal time of approximately 10 months. We have also simulated charge transfer in an irradiated CCD pixel using the defect distribution from both the room-temperature and cryogenic case, to study how the changes affect imaging performance. The results demonstrate the importance of cryogenic irradiation and annealing studies, with large variations seen in the defect distribution when compared to a device irradiated at room-temperature, which is the current standard procedure for radiation-tolerance testing

    Postirradiation behavior of p-channel charge-coupled devices irradiated at 153 K

    Get PDF
    The displacement damage hardness that can be achieved using p-channel charge-coupled devices (CCD) was originally demonstrated in 1997, and since then a number of other studies have demonstrated an improved tolerance to radiation-induced CTI when compared to n-channel CCDs. A number of recent studies have also shown that the temperature history of the device after the irradiation impacts the performance of the detector, linked to the mobility of defects at different temperatures. This study describes the initial results from an e2v technologies p-channel CCD204 irradiated at 153 K with a 10 MeV equivalent proton fluences of 1.24Ɨ109 and 1.24Ɨ1011 protons cm-2. The dark current, cosmetic quality and the number of defects identified using trap pumping immediately were monitored after the irradiation for a period of 150 hours with the device held at 153 K and then after different periods of time at room temperature. The device also exhibited a flatband voltage shift of around 30 mV / krad, determined by the reduction in full well capacity
    • ā€¦
    corecore