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T
he seas around the island of Ischia (Italy) have a

lowered pH as a result of volcanic gas vents that

emit carbon dioxide from the sea floor at ambient

seawater temperatures. These areas of acidified

seawater provide natural laboratories in which to study the

long-term biological response to rising CO2 levels. Benthic

foraminifera (single-celled protists) are particularly interest-

ing as they have short life histories, are environmentally

sensitive and have an excellent fossil record. Here, we examine

changes in foraminiferal assemblages along pH gradients at

CO2 vents on the coast of Ischia and show that the forami-

niferal distribution, diversity and nature of the fauna change

markedly in the living assemblages as pH decreases.

Short-term laboratory experiments indicate that, with rising

atmospheric pCO2 and a lowering of oceanic pH, many organ-

isms with calcareous shells may be unable to survive the next

100 years (Orr et al. 2005; Doney et al. 2009; Moy et al. 2009;

Veron et al. 2009) although others appear to be resistant (Findlay

et al. 2009; Ries et al. 2009). A wide range of benthic macro-

organisms (corals, barnacles, gastropods, echinoderms, sea-

grasses, calcareous and non-calcareous algae) living in the

shallow-water environments around the coast of Ischia (Bay of

Naples, Italy) show marked responses to increasing levels of

CO2 in the water (Hall-Spencer et al. 2008; Martin et al. 2008;

Rodolfo-Metalpa et al. 2010). Around Castello Aragonese (Fig.

1) shallow-water habitats have zones with increasing CO2 levels

where mean pH values (measured in Total Scale at the sedi-

ment–water interface) range from 8.14 to 6.57 (for details, see

Hall-Spencer et al. 2008). These waters provide a location at

which predicted effects of ocean acidification (Caldeira &

Wickett 2005; Royal Society 2005; IPCC 2007; Feely et al.

2004) can be tested by a study of the distribution of the living

biota. The seawater adjacent to Ischia is acidified by gas

comprising 90.1–95.3% CO2, 3.2–6.6% N2, 0.6–0.8% O2,

0.08–0.1% Ar and 0.2–0.8% CH4 (no sulphur). The salinity of

the water (38‰) and total alkalinity (2.5 mequiv. kg�1) are

uniform between all the sampling stations and the annual

temperature range is 13–25 8C (Hall-Spencer et al. 2008).

Samples and methods. We have studied the assemblages of

foraminifera from samples collected in the shallow waters around

Ischia. We used a trowel to collect 1 cm deep 200 ml surface

sediment samples at 2 m depth from areas with mean ambient

pH levels of 8.14, 7.87, 7.83, 7.09 and 6.57. The sediment

samples were collected by diving, and they were stored in

buffered formalin, washed on a 63 �m sieve, stained with Rose

Bengal (to distinguish live from dead individuals), re-washed and

dried at ,40 8C. Normal micropalaeontological dry sieving and

counting techniques were employed. The foraminifera were

identified (in the first instance using Cimerman & Langer 1991)

and imaged using a JEOL 5600 scanning electron microscope

with a digital capture system.

The living assemblages from the sea-floor areas with a

‘normal’ pH of c. 8.14 contain a range of taxa dominated by

miliolids, as would be expected in a shallow-water Mediterra-

nean environment with a salinity of 38‰ (Murray 2006). The

dominant taxa are Elphidium sp. cf. E. advenum, Triloculina

tricarinata, Pyrgo sp., Miliolinella elongata and Peneroplis

planatus (Fig. 2). Samples (S2 and N2 in Fig. 1) with lowered

pH (7.87–7.83) contain Miliammina fusca, Trochammina inflata,

Ammonia tepida and Reophax sp. Samples (S3 and N3 in Fig. 1)

Fig. 1. Location of Ischia and sampling locations on the Castello

Aragonese. Samples were collected from sites on traverses undertaken

both north and south of the bridge and the foraminiferal assemblages

were compared.



from areas with the highest CO2 levels (mean pH 7.09–6.57)

contain (at a pH of 7.6) an impoverished assemblage of

agglutinated foraminifera that includes Trochammina inflata,

Miliammina fusca, Textularia sp. cf. T. bocki and Ammoglobiger-

ina globigeriniformis.

Impact of acidification. The reduction of the foraminiferal

diversity (and abundance) mirrors that recorded for macrobenthic

calcifying organisms (Hall-Spencer et al. 2008; Martin et al.

2008). Figure 3 shows that diversity falls from 24 species to four

species from the normal marine samples towards the areas with

high CO2 levels. The foraminiferal assemblage also shifts from

one dominated by calcareous forms to one dominated by

agglutinated taxa within a distance of ,200 m as a result of the

acidification of the water by CO2 with no other measurable

gradients; depth, salinity, temperature, granulometry and light

levels were similar across all sites (Hall-Spencer et al. 2008).

The change in the assemblages is illustrated by use of the

triangular diagram developed by Murray for the investigation of

foraminiferal ecology (Murray 1991a, pp. 232–244; Murray

1991b). The samples from Ischia with normal pH are seen to plot

in the hypersaline field (dominated by miliolids), but with

reducing pH the data points migrate towards the sector with

100% agglutinated (textulariid) taxa (Fig. 4).

Implications for the fossil record. Samples with c. 100%

agglutinated assemblages of foraminifera are well known from

the geological record (Scott et al. 1983; Jones 1988; Charnock &

Jones 1990; Czarniecki 1993) and there has been much debate as

to whether these are primary (a response to the environment) or

secondary (the result of dissolution during taphonomy or diagen-

esis) (see Hart 1983, pp. 251–263, fig. 3). In the 1990s Alve and

Murray conducted a series of acidification experiments to test the

fate of a ‘normal’ foraminiferal assemblage when subjected to

treatment with weak acid (Murray 1989, 2006; Alve & Murray

1994, 1995; Murray & Alve 1994, 1999a,b, 2000). The assem-

Fig. 2. Selected species from Ischia, Italy.

1, Lobatula lobatula; 2, Cibicides refulgens;

3, Elphidium aculeatum; 4, Ammonia

tepida; 5, Peneroplis planatus; 6,

Laevipeneroplis karreri; 7, Planorbulina

mediterranensis; 8, Rosalina bradyi; 9,

Parrina bradyi; 10, Miliolinella labiosa; 11,

Quinqueloculina seminula; 12, Triloculina

tricarinata; 13, Spiroloculina ornata; 14,

Sigmoilinita costata; 15, Miliammina fusca;

16, Textularia sp. cf. T. bocki. Scale bar

represents 100 �m. It is important to note

that, in the case of specimens collected in

the areas of normal pH, the preservation is

excellent.
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blages generated (acid-treated assemblages or ATAs) by Alve &

Murray (1995) were, not surprisingly, composed of 100%

agglutinated taxa lacking calcareous cement. In the case of the

samples from Ischia, the change from a calcareous-dominated

assemblage (75%) to one with no calcareous taxa appears to be

entirely due to changing pH and not post-death acidification

during burial and diagenesis. In another example of the dom-

inance of agglutinated taxa in an assemblage (Murray et al.

2003) there was a restriction caused by depleted levels of

dissolved oxygen in the water column (though not anoxia) and

pH was not recorded.

The Palaeocene–Eocene Thermal Maximum (PETM) is one of

the most significant events in the Cenozoic and there is a body of

evidence to suggest that there was a period of ocean acidification,

which, in turn, affected the marine isotope record that is based on

benthic foraminifera (Spero et al. 1997; Zachos et al. 2005;

Pagani et al. 2006). The data from Ischia certainly confirm that a

change in pH could cause a marked change in the benthic

assemblage and even ‘extinction’ from a geological succession

(Speijer et al. 1996; Zachos et al. 2005; Kaiho et al. 2006;

Giusberti et al. 2009). Nguyen et al. (2009) have recently reported

on dissolution experiments (using water with a pH value as low as

6.6) aimed at understanding the events during the PETM. The

data from Ischia, however, provide information on the pH

conditions under which the living assemblage is affected, rather

than providing information on post-mortem dissolution. Presence

or absence of foraminifera at the PETM must be a combination of

both a biological restriction and a diagenetic impact.

Summary. The living (and dead) foraminiferal assemblages

showed significant changes resulting from CO2 acidification of

the shallow waters around Ischia. The assemblages in normal

conditions (pH 8.2–8.14) were dominated by calcareous forms

including abundant miliolids (Triloculina, Pyrgo, Miliolinella,

Quinqueloculina and Peneroplis). The most impoverished assem-

blages (pH 7.6) were all agglutinated species of Trochammina,

Miliammina, Textularia and Ammoglobigerina. This work con-

firms that, in open-water marine conditions, foraminifera are

sensitive to the effects of ocean acidification, thereby indicating

that rising levels of atmospheric pCO2 may cause significant

changes in these assemblages. It also confirms that changes in

pH could have caused the extinctions recorded at events such as

the PETM.

Appendix. Foraminifera recorded in the samples from Ischia.

The original author names and dates are given (for references,

see Cimerman & Langer 1991).

Normal pH 8.2–8.14

Ammonia inflata (Seguenza 1862); Brizalina sp.; Cibicides

advenum (d’Orbigny 1839); Cibicides refulgens Montfort 1808;

Cycloforina tenuicollis (Wiesner 1923); Elphidium aculeatum

(d’Orbigny 1846); Elphidium sp. cf. E. advenum (Cushman 1922);

Lepidiodeuteramina sp.; Massilina gualtieriana (d’Orbigny

1839); Miliolinella elongata Kruit 1955; Miliolinella labiosa

(d’Orbigny 1839); Parrina bradyi (Millett 1898); Peneroplis

pertusus (Forskål 1775); Peneroplis planatus (Fichtel & Moll

1798); Planorbulina mediterranensis d’Orbigny 1826; Pyrgo sp.;

Quinqueloculina berhelotiana d’Orbigny 1839; Quinqueloculina

jugosa Cushman 1944; Quinqueloculina seminula (Linné 1758);

Rosalina vilardeboana d’Orbigny 1839; Triloculina tricarinata

d’Orbigny 1826; Triloculina sp.

Medium pH 7.8

Ammonia tepida (Cushman 1926); Miliammina fusca (Brady

1870); Reophax sp.; Trochammina inflata (Montagu 1803).

Fig. 3. (a) Graph of changing composition of the living assemblage

(calcareous foraminifera:agglutinated foraminifera) across the range of

pH values: (b) diversity (measured as total number of living species)

across the range of pH values.

Fig. 4. Triangular diagram plotting miliolid taxa, agglutinated taxa and

rotaliid taxa, which shows the changing composition of the living

assemblage with the recorded changes in pH. It should be noted that the

change in pH required to completely change the nature of the assemblage

is relatively significant (from pH 8.2 to pH 7.8) although intermediate

values have not yet been investigated.
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Low pH 7.6

Ammoglobigerina globigeriniformis (Parker & Jones 1865);

Miliammina fusca (Brady 1870); Textularia sp. cf. T. bocki

Höglund 1947; Trochammina inflata (Montagu 1803).
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