305 research outputs found
Enabling Proactive Adaptation through Just-in-time Testing of Conversational Services
Service-based applications (SBAs) will increasingly be composed of third-party services available over the Internet. Reacting to failures of those third-party services by dynamically adapting the SBAs will become a key enabler for ensuring reliability. Determining when to adapt an SBA is especially challenging in the presence of conversational (aka. stateful) services. A conversational service might fail in the middle of an invocation sequence, in which case adapting the SBA might be costly; e.g., due to the necessary state transfer to an alternative service. In this paper we propose just-in-time testing of conversational services as a novel approach to detect potential problems and to proactively trigger adaptations, thereby preventing costly compensation activities. The approach is based on a framework for online testing and a formal test-generation method which guarantees functional correctness for conversational services. The applicability of the approach is discussed with respect to its underlying assumptions and its performance. The benefits of the approach are demonstrated using a realistic example
Analysis and Verification of Service Interaction Protocols - A Brief Survey
Modeling and analysis of interactions among services is a crucial issue in
Service-Oriented Computing. Composing Web services is a complicated task which
requires techniques and tools to verify that the new system will behave
correctly. In this paper, we first overview some formal models proposed in the
literature to describe services. Second, we give a brief survey of verification
techniques that can be used to analyse services and their interaction. Last, we
focus on the realizability and conformance of choreographies.Comment: In Proceedings TAV-WEB 2010, arXiv:1009.330
A Mathematical Approach Estimating Source and Sink Functioning of Competing Organs
in pressPlant growth and development depend on both organogenesis and photosynthesis. Organogenesis sets in place various organs (leaves, internodes, fruits, roots) that have their own sinks. The sum of these sinks corresponds to the plant demand. Photosynthesis of the leaves provides the biomass supply (source) that is to be shared among the organs according to their sink strength. Here we present a mathematical model – GreenLab – that describes dynamically plant architecture in a resource-dependent way. The source and sink functions of the various organs control the biomass acquisition and partitioning during plant development and growth, giving the sizes and weights of organs according to their position in the plant architecture. Non-linear least-square method was used to estimate the numerical values of (hidden) parameters that control the organ sink variation and leaf functioning. Through simultaneous fitting of data from several developmental stages (multi-fitting), plant growth could be described satisfactorily with just a few parameters. Examples of application on cotton and maize are shown in this article
Runtime verification of parametric properties using SMEDL
Parametric properties are typical properties to be checked in runtime verification (RV). As a common technique for parametric monitoring, trace slicing divides an execution trace into a set of sub traces which are checked against non-parametric base properties. An efficient trace slicing algorithm is implemented in MOP. Another RV technique, QEA further allows for nested use of universal and existential quantification over parameters. In this paper, we present a methodology for parametric monitoring using the RV framework SMEDL. Trace slicing algorithm in MOP can be expressed by execution of a set of SMEDL monitors. Moreover, the semantics of nested quantifiers is encoded by a hierarchy of monitors for aggregating verdicts of sub traces. Through case studies, we demonstrate that SMEDL provides a natural way to monitor parametric properties with more potentials for flexible deployment and optimizations
Promoting the use of a self-management strategy among novice chiropractors treating individuals with spine pain: A mixed methods pilot clustered-clinical trial
Background The uptake of Self-Management Support (SMS) among clinicians is suboptimal. To date, few studies have tested knowledge translation (KT) interventions to increase the application of SMS in chiropractic teaching clinics. Study objective Evaluate the feasibility of implementing a KT intervention to promote the use of a SMS strategy among chiropractic interns, their supervisors, and individuals with spine pain compared to controls. Methods Mixed methods pilot clustered-clinical trial. Clusters of 16 Patient Management Teams were allocated to a complex KT intervention (online and workshop training). Primary feasibility outcomes for clinicians, interns and patients were rates of recruitment, retention, and adherence to protocol. A nominal group technique and interviews were used to seek end-users' views on the implementation process, and generate possible solutions. Results In total, 16 (84%) clinicians, 65 (26%) interns and 42 patients agreed to participate. All clinicians in the intervention group completed all KT intervention components, 23 interns (85%) completed the online training and 14 interns (51.8%) attended the workshop training. All clinicians in the intervention and seven (78%) in the control group completed all outcome measures at baseline and 6-month follow-up, while 15 (55.6%) and 23 (60.5%) interns in the intervention and control groups completed the questionnaires at baseline and 6-month follow-up, respectively. Among patients, 10 (52.6%) and 12 (52.2%) in the intervention and control groups respectively completed the questionnaires at the end of the study. Based on interview findings, solutions to improve the feasibility of conducting a full trial include: making SMS a part of the internship, changing the time of introducing the study to the interns, and having more training on SMS. Conclusion Recruitment and retention of chiropractic interns and patients for a larger implementation trial in a single outpatient teaching clinic may be challenging. © 2022 Eilayyan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Unworking Milton: Steps to a Georgics of the Mind
Traditionally read as a poem about laboring subjects who gain power through abstract and abstracting forms of bodily discipline, John Milton’s Paradise Lost (1667, 1674) more compellingly foregrounds the erotics of the Garden as a space where humans and nonhumans intra-act materially and sexually. Following Christopher Hill, who long ago pointed to not one but two revolutions in the history of seventeenth-century English radicalism—the first, ‘the one which succeeded[,] . . . the protestant ethic’; and the second, ‘the revolution which never happened,’ which sought ‘communal property, a far wider democracy[,] and rejected the protestant ethic’—I show how Milton’s Paradise Lost gives substance to ‘the revolution which never happened’ by imagining a commons, indeed a communism, in which human beings are not at the center of things, but rather constitute one part of the greater ecology of mind within Milton’s poem. In the space created by this ecological reimagining, plants assume a new agency. I call this reimagining ‘ecology to come.
Classical Morphology of Plants as an Elementary Instance of Classical Invariant Theory
It has long been known that structural chemistry shows an intriguing correspondence with Classical Invariant Theory (CIT). Under this view, an algebraic binary form of the degree n corresponds to a chemical atom with valence n and each physical molecule or ion has an invariant-theoretic counterpart. This theory was developed using the Aronhold symbolical approach and the symbolical processes of convolution/transvection in CIT was characterized as a potential “accurate morphological method”. However, CIT has not been applied to the formal morphology of living organisms. Based on the morphological interpretation of binary form, as well as the process of convolution/transvection, the First and Second Fundamental Theorems of CIT and the Nullforms of CIT, we show how CIT can be applied to the structure of plants, especially when conceptualized as a series of plant metamers (phytomers). We also show that the weight of the covariant/invariant that describes a morphological structure is a criterion of simplicity and, therefore, we argue that this allows us to formulate a parsimonious method of formal morphology. We demonstrate that the “theory of axilar bud” is the simplest treatment of the grass seedling/embryo. Our interpretations also represent Troll's bauplan of the angiosperms, the principle of variable proportions, morphological misfits, the basic types of stem segmentation, and Goethe's principle of metamorphosis in terms of CIT. Binary forms of different degrees might describe any repeated module of plant organisms. As bacteria, invertebrates, and higher vertebrates are all generally shared a metameric morphology, wider implications of the proposed symmetry between CIT and formal morphology of plants are apparent
- …