138 research outputs found

    Simulations reveal that different responses to cell crowding determine the expansion of p53 and Notch mutant clones in squamous epithelia.

    Get PDF
    Funder: MRC Cancer unitFunder: Clare CollegeDuring ageing, normal epithelial tissues progressively accumulate clones carrying mutations that increase mutant cell fitness above that of wild-type cells. Such mutants spread widely through the tissues, yet despite this cellular homeostasis and functional integrity of the epithelia are maintained. Two of the genes most commonly mutated in human skin and oesophagus are p53 and Notch1, both of which are also recurrently mutated in cancers of these tissues. From observations taken in human and mouse epithelia, we find that clones carrying p53 and Notch pathway mutations have different clone dynamics which can be explained by their different responses to local cell crowding. p53 mutant clone growth in mouse epidermis approximates a logistic curve, but feedbacks responding to local crowding are required to maintain tissue homeostasis. We go on to show that the observed ability of Notch pathway mutant cells to displace the wild-type population in the mouse oesophageal epithelium reflects a local density feedback that affects both mutant and wild-type cells equally. We then show how these distinct feedbacks are consistent with the distribution of mutations observed in human datasets and are suggestive of a putative mechanism to constrain these cancer-associated mutants

    Somatic mutations in facial skin from countries of contrasting skin cancer risk

    Get PDF
    The incidence of keratinocyte cancer (basal cell and squamous cell carcinomas of the skin) is 17-fold lower in Singapore than the UK1-3, despite Singapore receiving 2-3 times more ultraviolet (UV) radiation4,5. Aging skin contains somatic mutant clones from which such cancers develop6,7. We hypothesized that differences in keratinocyte cancer incidence may be reflected in the normal skin mutational landscape. Here we show that, compared to Singapore, aging facial skin from populations in the UK has a fourfold greater mutational burden, a predominant UV mutational signature, increased copy number aberrations and increased mutant TP53 selection. These features are shared by keratinocyte cancers from high-incidence and low-incidence populations8-13. In Singaporean skin, most mutations result from cell-intrinsic processes; mutant NOTCH1 and NOTCH2 are more strongly selected than in the UK. Aging skin in a high-incidence country has multiple features convergent with cancer that are not found in a low-risk country. These differences may reflect germline variation in UV-protective genes

    Notch1 mutations drive clonal expansion in normal esophageal epithelium but impair tumor growth

    Get PDF
    NOTCH1 mutant clones occupy the majority of normal human esophagus by middle age but are comparatively rare in esophageal cancers, suggesting NOTCH1 mutations drive clonal expansion but impede carcinogenesis. Here we test this hypothesis. Sequencing NOTCH1 mutant clones in aging human esophagus reveals frequent biallelic mutations that block NOTCH1 signaling. In mouse esophagus, heterozygous Notch1 mutation confers a competitive advantage over wild-type cells, an effect enhanced by loss of the second allele. Widespread Notch1 loss alters transcription but has minimal effects on the epithelial structure and cell dynamics. In a carcinogenesis model, Notch1 mutations were less prevalent in tumors than normal epithelium. Deletion of Notch1 reduced tumor growth, an effect recapitulated by anti-NOTCH1 antibody treatment. Notch1 null tumors showed reduced proliferation. We conclude that Notch1 mutations in normal epithelium are beneficial as wild-type Notch1 favors tumor expansion. NOTCH1 blockade may have therapeutic potential in preventing esophageal squamous cancer

    Somatic mutant clones colonize the human esophagus with age.

    Get PDF
    The extent to which cells in normal tissues accumulate mutations throughout life is poorly understood. Some mutant cells expand into clones that can be detected by genome sequencing. We mapped mutant clones in normal esophageal epithelium from nine donors (age range, 20 to 75 years). Somatic mutations accumulated with age and were caused mainly by intrinsic mutational processes. We found strong positive selection of clones carrying mutations in 14 cancer genes, with tens to hundreds of clones per square centimeter. In middle-aged and elderly donors, clones with cancer-associated mutations covered much of the epithelium, with NOTCH1 and TP53 mutations affecting 12 to 80% and 2 to 37% of cells, respectively. Unexpectedly, the prevalence of NOTCH1 mutations in normal esophagus was several times higher than in esophageal cancers. These findings have implications for our understanding of cancer and aging.Wellcome Trust Cancer Research U

    Current debates in urban theory: a critical assessment

    Get PDF
    Urban studies today is marked by many active debates. In an earlier paper, we addressed some of these debates by proposing a foundational concept of urbanization and urban form as a way of identifying a common language for urban research. In the present paper we provide a brief recapitulation of that framework. We then use this preliminary material as background to a critique of three currently influential versions of urban analysis, namely, postcolonial urban theory, assemblage theoretic approaches, and planetary urbanism. We evaluate each of these versions in turn and find them seriously wanting as statements about urban realities. We criticize (a) postcolonial urban theory for its particularism and its insistence on the provincialization of knowledge, (b) assemblage theoretic approaches for their indeterminacy and eclecticism, and (c) planetary urbanism for its radical devaluation of the forces of agglomeration and nodality in urban-economic geography

    Chronic obstructive pulmonary disease and related phenotypes: polygenic risk scores in population-based and case-control cohorts

    Get PDF
    Background Genetic factors influence chronic obstructive pulmonary disease (COPD) risk, but the individual variants that have been identified have small effects. We hypothesised that a polygenic risk score using additional variants would predict COPD and associated phenotypes. Methods We constructed a polygenic risk score using a genome-wide association study of lung function (FEV1 and FEV1/forced vital capacity [FVC]) from the UK Biobank and SpiroMeta. We tested this polygenic risk score in nine cohorts of multiple ethnicities for an association with moderate-to-severe COPD (defined as FEV1/FVC <0·7 and FEV1 <80% of predicted). Associations were tested using logistic regression models, adjusting for age, sex, height, smoking pack-years, and principal components of genetic ancestry. We assessed predictive performance of models by area under the curve. In a subset of studies, we also studied quantitative and qualitative CT imaging phenotypes that reflect parenchymal and airway pathology, and patterns of reduced lung growth. Findings The polygenic risk score was associated with COPD in European (odds ratio [OR] per SD 1·81 [95% CI 1·74–1·88] and non-European (1·42 [1·34–1·51]) populations. Compared with the first decile, the tenth decile of the polygenic risk score was associated with COPD, with an OR of 7·99 (6·56–9·72) in European ancestry and 4·83 (3·45–6·77) in non-European ancestry cohorts. The polygenic risk score was superior to previously described genetic risk scores and, when combined with clinical risk factors (ie, age, sex, and smoking pack-years), showed improved prediction for COPD compared with a model comprising clinical risk factors alone (AUC 0·80 [0·79–0·81] vs 0·76 [0·75–0·76]). The polygenic risk score was associated with CT imaging phenotypes, including wall area percent, quantitative and qualitative measures of emphysema, local histogram emphysema patterns, and destructive emphysema subtypes. The polygenic risk score was associated with a reduced lung growth pattern. Interpretation A risk score comprised of genetic variants can identify a small subset of individuals at markedly increased risk for moderate-to-severe COPD, emphysema subtyp

    Fast core rotation in red-giant stars revealed by gravity-dominated mixed modes

    Get PDF
    When the core hydrogen is exhausted during stellar evolution, the central region of a star contracts and the outer envelope expands and cools, giving rise to a red giant, in which convection occupies a large fraction of the star. Conservation of angular momentum requires that the cores of these stars rotate faster than their envelopes, and indirect evidence supports this. Information about the angular momentum distribution is inaccessible to direct observations, but it can be extracted from the effect of rotation on oscillation modes that probe the stellar interior. Here, we report the detection of non-rigid rotation in the interiors of red-giant stars by exploiting the rotational frequency splitting of recently detected mixed modes. We demonstrate an increasing rotation rate from the surface of the star to the stellar core. Comparing with theoretical stellar models, we conclude that the core must rotate at least ten times faster than the surface. This observational result confirms the theoretical prediction of a steep gradient in the rotation profile towards the deep stellar interior.Comment: to appear as a Letter to Natur
    corecore