29 research outputs found

    Characterization of Salmonella Typhimurium isolates from domestically acquired infections in Finland by phage typing, antimicrobial susceptibility testing, PFGE and MLVA

    Get PDF
    Background: Salmonella enterica spp. enterica serotype Typhimurium (STM) is the most common agent of domestically acquired salmonellosis in Finland. Subtyping methods which allow the characterization of STM are essential for effective laboratory-based STM surveillance and for recognition of outbreaks. This study describes the diversity of Finnish STM isolates using phage typing, antimicrobial susceptible testing, pulsed-field gel electrophoresis (PFGE) and multilocus variable-number tandem repeat analysis (MLVA), and compares the discriminatory power and the concordance of these methods. Results: A total of 375 sporadic STM isolates were analysed. The isolates were divided into 31 definite phage (DT) types, dominated by DT1 (47 % of the isolates), U277 (9 % of the isolates) and DT104 (8 % of the isolates). Of all the isolates, 62 % were susceptible to all the 12 antimicrobials tested and 11 % were multidrug resistant. Subtyping resulted in 83 different XbaI-PFGE profiles and 111 MLVA types. The three most common XbaI-PFGE profiles (STYM1, STYM7 and STYM8) and one MLVA profile with three single locus variants accounted for 56 % and 49 % of the STM isolates, respectively. The studied isolates showed a genetic similarity of more than 70 % by XbaI-PFGE. In MLVA, 71 % of the isolates lacked STTR6 and 77 % missed STTR10p loci. Nevertheless, the calculated Simpson's diversity index for XbaI-PFGE was 0.829 (95 % CI 0.792-0.865) and for MLVA 0.867 (95 % CI 0.835-0.898). However, the discriminatory power of the 5-loci MLVA varied among the phage types. The highest concordance of the results was found between XbaI-PFGE and phage typing (adjusted Wallace coefficient was 0.833 and adjusted Rand coefficient was 0.627). Conclusions: In general, the calculated discriminatory power was higher for genotyping methods (MLVA and XbaI-PFGE) than for phenotyping methods (phage typing). Overall, comparable diversity indices were calculated for PFGE and MLVA (both DI > 0.8). However, MLVA was phage type dependent providing better discrimination of the most common phage types. Furthermore, 5-loci MLVA was a less laborious method and easier to interpret than XbaI-PFGE. Thus, the laboratory-based surveillance of the Finnish human STM infections has been conducted with a combination of phage typing, antimicrobial susceptibility testing and 5-loci MLVA since January 2014.Peer reviewe

    Semen as a source of Mycoplasma bovis mastitis in dairy herds

    Get PDF
    Mycoplasma bovis infections are responsible for substantial economic losses in the cattle industry, have significant welfare effects and increase antibiotic use. The pathogen is often introduced into naive herds through healthy carrier animals. In countries with a low prevalence of M. bovis, transmission from less common sources can be better explored as the pathogen has limited circulation compared to high prevalence populations. In this study, we describe how M. bovis was introduced into two closed and adequately biosecure dairy herds through the use of contaminated semen during artificial insemination (AI), leading to mastitis outbreak in both herds. Epidemiological analysis did not reveal an infection source other than semen. In both farms the primary clinical cases were M. bovis mastitis in cows inseminated with the semen of the same bull four weeks before the onset of the disease. One semen straw derived from the semen tank on the farm and other semen lots of this bull were positive for M. bovis. In contrast, semen samples were negative from other bulls that had been used for insemination in previous or later oestrus to those cows with M. bovis mastitis. Furthermore, cgMLST of M. bovis isolates supported the epidemiological results. To our knowledge this is the first study describing the introduction of M. bovis infection into a naive dairy herd via processed semen. The antibiotics used in semen extenders should be re-evaluated in order to provide farms with M. bovis-free semen or tested M. bovis-free semen should be available.Peer reviewe

    Comparative Genomics of Shiga Toxin-Producing Escherichia coli Strains Isolated from Pediatric Patients with and without Hemolytic Uremic Syndrome from 2000 to 2016 in Finland

    Get PDF
    Publisher Copyright: © 2022 Bai et al.Shiga toxin-producing Escherichia coli (STEC) infection can cause mild to severe illness, such as nonbloody or bloody diarrhea, and the fatal hemolytic uremic syndrome (HUS). The molecular mechanism underlying the variable pathogenicity of STEC infection is not fully defined so far. Here, we performed a comparative genomics study on a large collection of clinical STEC strains collected from STEC-infected pediatric patients with and without HUS in Finland over a 16-year period, aiming to identify the bacterial genetic factors that can predict the risk to cause HUS and poor renal outcome. Of 240 STEC strains included in this study, 52 (21.7%) were from pediatric patients with HUS. Serotype O157:H7 was the main cause of HUS, and Shiga toxin gene subtype stx2a was significantly associated with HUS. Comparative genomics and pangenome-wide association studies identified a number of virulence and accessory genes overrepresented in HUS-associated STEC compared to non-HUS STEC strains, including genes encoding cytolethal distending toxins, type III secretion system effectors, adherence factors, etc. No virulence or accessory gene was significantly associated with risk factors for poor renal outcome among HUS patients assessed in this study, including need for and duration of dialysis, presence and duration of anuria, and leukocyte counts. Whole-genome phylogeny and multiple-correspondence analysis of pangenomes could not separate HUS STEC from non-HUS STEC strains, suggesting that STEC strains with diverse genetic backgrounds may independently acquire genetic elements that determine their varied pathogenicity. Our findings indicate that nonbacterial factors, i.e., characteristics of the host immunity, might affect STEC virulence and clinical outcomes.Peer reviewe

    Comparative Genomics and Characterization of Hybrid Shigatoxigenic and Enterotoxigenic Escherichia coli (STEC/ETEC) Strains

    Get PDF
    Background Shigatoxigenic Escherichia coli (STEC) and enterotoxigenic E. coli (ETEC) cause serious foodborne infections in humans. These two pathogroups are defined based on the pathogroup-associated virulence genes: stx encoding Shiga toxin (Stx) for STEC and elt encoding heat-labile and/or est encoding heat-stable enterotoxin (ST) for ETEC. The study investigated the genomics of STEC/ETEC hybrid strains to determine their phylogenetic position among E. coli and to define the virulence genes they harbor. Methods The whole genomes of three STEC/ETEC strains possessing both stx and est genes were sequenced using PacBio RS sequencer. Two of the strains were isolated from the patients, one with hemolytic uremic syndrome, and one with diarrhea. The third strain was of bovine origin. Core genome analysis of the shared chromosomal genes and comparison with E. coli and Shigella spp. reference genomes was performed to determine the phylogenetic position of the STEC/ETEC strains. In addition, a set of virulence genes and ETEC colonization factors were extracted from the genomes. The production of Stx and ST were studied. Results The human STEC/ETEC strains clustered with strains representing ETEC, STEC, entero-aggregative E. coli, and commensal and laboratory-adapted E. coli. However, the bovine STEC/ETEC strain formed a remote cluster with two STECs of bovine origin. All three STEC/ETEC strains harbored several other virulence genes, apart from stx and est, and lacked ETEC colonization factors. Two STEC/ETEC strains produced both toxins and one strain Stx only. Conclusions This study shows that pathogroup-associated virulence genes of different E. coli can coexist in strains originating from different phylogenetic lineages. The possibility of virulence genes to be associated with several E. coli pathogroups should be taken into account in strain typing and in epidemiological surveillance. Development of novel hybrid E. coli strains may cause a new public health risk, which challenges the traditional diagnostics of E. coli infections.Peer reviewe

    Hemolytic uremic syndrome caused by Shiga toxin–producing Escherichia coli in children: incidence, risk factors, and clinical outcome

    Get PDF
    Hemolytic uremic syndrome (HUS) is a multisystemic disease. In a nationwide study, we characterized the incidence, clinical course, and prognosis of HUS caused by Shiga toxin (Stx)–producing Escherichia coli (STEC) strains with emphasis on risk factors, disease severity, and long-term outcome.Peer reviewe

    Shopping Detail Information and Home Freezer Sampling Confirmed the Role of Commercial, Modified-Atmosphere Packaged Meatballs as a Vehicle for Listeriosis in Finland

    Get PDF
    In November 2016, an elderly patient was diagnosed with Listeria monocytogenes bacteremia in Finland. Grocery store loyalty card records and microbiological investigation of foods found in the home fridge and freezer of the patient revealed commercial, modified-atmosphere packaged meatballs as the source of the infection. Investigation of the meatball production plant revealed that the floor drain samples were contaminated with the same L. monocytogenes strain as those isolated from the patient and meatballs. Ready-to-eat meatballs were likely contaminated after heat treatment from the production environment before packaging. Long-term cold storage, modified-atmosphere conditions, and the absence of competing bacteria presumably enhanced the growth of L. monocytogenes. We recommend that collection of shopping details and home fridge and freezer sampling should be part of surveillance of all cases of L. monocytogenes infections to complement information obtained from in-depth interviews.Peer reviewe

    Hemolytic uremic syndrome caused by Shiga toxin-producing Escherichia coli in children: incidence, risk factors, and clinical outcome

    Get PDF
    Background Hemolytic uremic syndrome (HUS) is a multisystemic disease. In a nationwide study, we characterized the incidence, clinical course, and prognosis of HUS caused by Shiga toxin (Stx)-producing Escherichia coli (STEC) strains with emphasis on risk factors, disease severity, and long-term outcome. Methods The data on pediatric HUS patients from 2000 to 2016 were collected from the medical records. STEC isolates from fecal cultures of HUS and non-HUS patients were collected from the same time period and characterized by whole genome sequencing analysis. Results Fifty-eight out of 262 culture-positive cases developed verified (n = 58, 22%) STEC-HUS. Another 29 cases had probable STEC-HUS, the annual incidence of STEC-HUS being 0.5 per 100,000 children. Eleven different serogroups were detected, O157 being the most common (n = 37, 66%). Age under 3 years (OR 2.4), stx2 (OR 9.7), and stx2a (OR 16.6) were found to be risk factors for HUS. Fifty-five patients (63%) needed dialysis. Twenty-nine patients (33%) developed major neurological symptoms. Complete renal recovery was observed in 57 patients after a median 4.0 years of follow-up. Age under 3 years, leukocyte count over 20 x 10(9)/L, and need for dialysis were predictive factors for poor renal outcome. Conclusions Age under 3 years, stx2, and stx2a were risk factors for HUS in STEC-positive children. However, serogroup or stx types did not predict the renal outcome or major CNS symptoms.</p

    INNUENDO: A cross-sectoral platform for the integration of genomics in the surveillance of food-borne pathogens

    Get PDF
    Abstract In response to the EFSA call New approaches in identifying and characterizing microbial and chemical hazards, the project INNUENDO (https://sites.google.com/site/theinnuendoproject/) aimed to design an analytical platform and standard procedures for the use of whole-genome sequencing in surveillance and outbreak investigation of food-borne pathogens. The project firstly attempted to identify existing flaws and needs, and then to provide applicable cross-sectorial solutions. The project focused in developing a platform for small countries with limited economical and personnel resources. To achieve these goals, we applied a user-centered design strategy involving the end-users, such as microbiologists in public health and veterinary authorities, in every step of the design, development and implementation phases. As a result, we delivered the INNUENDO Platform V1.0 (https://innuendo.readthedocs.io/en/latest/), a stand-alone, portable, open-source, end-to-end system for the management, analysis, and sharing of bacterial genomic data. The platform uses Nextflow workflow manager to assemble analytical software modules in species-specific protocols that can be run using a user-friendly interface. The reproducibility of the process is ensured by using Docker containers and throught the annotation of the whole process using an ontology. Several modules, available at https://github.com/TheInnuendoProject, have been developed including: genome assembly and species confirmation; fast genome clustering; in silico typing; standardized species-specific phylogenetic frameworks for Campylobacter jejuni, Yersinia enterocolitica, Salmonella enterica and Escherichia coli based on an innovative gene-by-gene methodology; quality control measures from raw reads to allele calling; reporting system; a built-in communication protocols and a strain classification system enabling smooth communication during outbreak investigation. As proof-of-concepts, the proposed solutions have been thoroughly tested in simulated outbreak conditions by several public health and veterinary agencies across Europe. The results have been widely disseminated through several channels (web-sites, scientific publications, organization of workshops). The INNUENDO Platform V1.0 is effectively one of the models for the usage of open-source software in genomic epidemiology.Peer reviewe
    corecore