40 research outputs found

    Identification and Characterization of σS, a Novel Component of the Staphylococcus aureus Stress and Virulence Responses

    Get PDF
    S. aureus is a highly successful pathogen that is speculated to be the most common cause of human disease. The progression of disease in S. aureus is subject to multi-factorial regulation, in response to the environments encountered during growth. This adaptive nature is thought to be central to pathogenesis, and is the result of multiple regulatory mechanisms employed in gene regulation. In this work we describe the existence of a novel S. aureus regulator, an as yet uncharacterized ECF-sigma factor (σS), that appears to be an important component of the stress and pathogenic responses of this organism. Using biochemical approaches we have shown that σS is able to associates with core-RNAP, and initiate transcription from its own coding region. Using a mutant strain we determined that σS is important for S. aureus survival during starvation, extended exposure to elevated growth temperatures, and Triton X-100 induced lysis. Coculture studies reveal that a σS mutant is significantly outcompeted by its parental strain, which is only exacerbated during prolonged growth (7 days), or in the presence of stressor compounds. Interestingly, transcriptional analysis determined that under standard conditions, S. aureus SH1000 does not initiate expression of sigS. Assays performed hourly for 72h revealed expression in typically background ranges. Analysis of a potential anti-sigma factor, encoded downstream of sigS, revealed it to have no obvious role in the upregulation of sigS expression. Using a murine model of septic arthritis, sigS-mutant infected animals lost significantly less weight, developed septic arthritis at significantly lower levels, and had increased survival rates. Studies of mounted immune responses reveal that sigS-mutant infected animals had significantly lower levels of IL-6, indicating only a weak immunological response. Finally, strains of S. aureus lacking sigS were far less able to undergo systemic dissemination, as determined by bacterial loads in the kidneys of infected animals. These results establish that σS is an important component in S. aureus fitness, and in its adaptation to stress. Additionally it appears to have a significant role in its pathogenic nature, and likely represents a key component in the S. aureus regulatory network

    Determining crystal structures through crowdsourcing and coursework

    Get PDF
    We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality

    Hereditary Hemochromatosis Predisposes Mice to Yersinia pseudotuberculosis Infection Even in the Absence of the Type III Secretion System.

    Get PDF
    The iron overload disorder hereditary hemochromatosis (HH) predisposes humans to serious disseminated infection with pathogenic Yersinia as well as several other pathogens. Recently, we showed that the iron-sulfur cluster coordinating transcription factor IscR is required for type III secretion in Y. pseudotuberculosis by direct control of the T3SS master regulator LcrF. In E. coli and Yersinia, IscR levels are predicted to be regulated by iron bioavailability, oxygen tension, and oxidative stress, such that iron depletion should lead to increased IscR levels. To investigate how host iron overload influences Y. pseudotuberculosis virulence and the requirement for the Ysc type III secretion system (T3SS), we utilized two distinct murine models of HH: hemojuvelin knockout mice that mimic severe, early-onset HH as well as mice with the Hfe (C282Y∕C282Y) mutation carried by 10% of people of Northern European descent, associated with adult-onset HH. Hjv (-∕-) and Hfe (C282Y∕C282Y) transgenic mice displayed enhanced colonization of deep tissues by Y. pseudotuberculosis following oral inoculation, recapitulating enhanced susceptibility of humans with HH to disseminated infection with enteropathogenic Yersinia. Importantly, HH mice orally infected with Y. pseudotuberculosis lacking the T3SS-encoding virulence plasmid, pYV, displayed increased deep tissue colonization relative to wildtype mice. Consistent with previous reports using monocytes from HH vs. healthy donors, macrophages isolated from Hfe (C282Y∕C282Y) mice were defective in Yersinia uptake compared to wildtype macrophages, indicating that the anti-phagocytic property of the Yersinia T3SS plays a less important role in HH animals. These data suggest that Yersinia may rely on distinct virulence factors to cause disease in healthy vs. HH hosts

    Control of hmu Heme Uptake Genes in Yersinia pseudotuberculosis in Response to Iron Sources

    No full text
    Despite the mammalian host actively sequestering iron to limit pathogenicity, heme (or hemin when oxidized) and hemoproteins serve as important sources of iron for many bloodborne pathogens. The HmuRSTUV hemin uptake system allows Yersinia species to uptake and utilize hemin and hemoproteins as iron sources. HmuR is a TonB-dependent outer membrane receptor for hemin and hemoproteins. HmuTUV comprise a inner membrane ABC transporter that transports hemin and hemoproteins from the periplasmic space into the bacterial cytoplasm, where it is degraded by HmuS. Here we show that hmuSTUV but not hmuR are expressed under iron replete conditions, whereas hmuR as well as hmuSTUV are expressed under iron limiting conditions, suggesting complex transcriptional control. Indeed, expression of hmuSTUV in the presence of inorganic iron, but not in the presence of hemin, requires the global regulator IscR acting from a promoter in the intergenic region between hmuR and hmuS. This effect of IscR appears to be direct by binding a site mapped by DNaseI footprinting. In contrast, expression of hmuR under iron limiting conditions requires derepression of the ferric uptake regulator Fur acting from the hmuR promoter, as Fur binding upstream of hmuR was demonstrated biochemically. Differential expression by both Fur and IscR would facilitate maximal hemin uptake and utilization when iron and heme availability is low while maintaining the capacity for periplasmic removal and cytosolic detoxification of heme under a wider variety of conditions. We also demonstrate that a Y. pseudotuberculosis ΔiscR mutant has a survival defect when incubated in whole blood, in which iron is sequestered by heme-containing proteins. Surprisingly, this phenotype was independent of the Hmu system, the type III secretion system, complement, and the ability of Yersinia to replicate intracellularly. These results suggest that IscR regulates multiple virulence factors important for Yersinia survival and growth in mammalian tissues and reveal a surprising complexity of heme uptake expression and function under differing conditions of iron

    Staphylococcal Proteases Aid in Evasion of the Human Complement System

    No full text
    Staphylococcus aureus is an opportunistic pathogen that presents severe health care concerns due to the prevalence of multiple antibiotic-resistant strains. New treatment strategies are urgently needed, which requires an understanding of disease causation mechanisms. Complement is one of the first lines of defense against bacterial pathogens, and S. aureus expresses several specific complement inhibitors. The effect of extracellular proteases from this bacterium on complement, however, has been the subject of limited investigation, except for a recent report regarding cleavage of the C3 component by aureolysin (Aur). We demonstrate here that four major extracellular proteases of S. aureus are potent complement inhibitors. Incubation of human serum with the cysteine proteases staphopain A and staphopain B, the serine protease V8 and the metalloproteinase Aur resulted in a drastic decrease in the hemolytic activity of serum, whereas two staphylococcal serine proteases D and E, had no effect. These four proteases were found to inhibit all pathways of complement due to the efficient degradation of several crucial components. Furthermore, S. aureus mutants lacking proteolytic enzymes were found to be more efficiently killed in human blood. Taken together, the major proteases of S. aureus appear to be important for pathogen-mediated evasion of the human complement system. © 2013 S. Karger AG, Basel
    corecore