909 research outputs found

    Design of Oil Shale Disposal Embankment

    Get PDF
    Mining processes and associated regulations for oil shale development in eastern United States are discussed with emphasis given to overburden and spent shale disposal at the mining site. Curves are presented which allow for quick determination of stripping ratios, overburden quantities and oil shale quantities. Procedures are outlined for determining quantities of materials to be disposed and graphs are given for sizing various zones of the disposal embankment. These procedures are demonstrated with an example. Stability of slopes and magnitude of settlement are functions of the engineering properties of the embankment materials. Procedures for obtaining these data are from field exploration and laboratory tests are given. Some of these data can be estimated from inexpensive index tests. Details of excavation, preparation of embankment foundation, and of construction are given. Compaction equipment, procedures, specifications, and control are all addressed. Techniques for analyzing the stability of slopes are examined and several examples are provided. Finally, procedures for estimating magnitude and rate of settlement are given. Since oil shale operations are new to this region, it is recommended that initial embankment construction operations and embankment performance be monitored closely. Adjustments based on the observed performance should improve the economics of the disposal operation

    Engineering Properties of Kentucky Oil Shales

    Get PDF
    Excavation, handling, and the environmentally safe disposal of spent oil shale and overburden materials require a knowledge of their geotechnical engineering properties. To determine these properties a laboratory investigation of the physical and geotechnical engineering properties was made. The physical tests consisted of mechanical analyses, Atterberg Limits, and specific gravity determinations. Geotechnical properties were determined by moisture-density analyses, triaxial compression, permeability tests, slake-durability, one-dimensional compression tests, and Los Angeles abrasion. A one-dimensional compression test was devised to address the problem of placement, loading, and saturation of the spent shales and overburden materials. The compacted, unprocessed oil shales were more susceptible to inundation and compression than compacted specimens of retorted shales and chars. Comparisons of the geotechnical properties of the unprocessed oil shales and processed shales are made

    Development of a Cx46 Targeting Strategy for Cancer Stem Cells

    Get PDF
    Gap-junction-mediated cell-cell communication enables tumor cells to synchronize complex processes. We previously found that glioblastoma cancer stem cells (CSCs) express higher levels of the gap junction protein Cx46 compared to non-stem tumor cells (non-CSCs) and that this was necessary and sufficient for CSC maintenance. To understand the mechanism underlying this requirement, we use point mutants to disrupt specific functions of Cx46 and find that Cx46-mediated gap-junction coupling is critical for CSCs. To develop a Cx46 targeting strategy, we screen a clinically relevant small molecule library and identify clofazimine as an inhibitor of Cx46-specific cell-cell communication. Clofazimine attenuates proliferation, self-renewal, and tumor growth and synergizes with temozolomide to induce apoptosis. Although clofazimine does not cross the blood-brain barrier, the combination of clofazimine derivatives optimized for brain penetrance with standard-of-care therapies may target glioblastoma CSCs. Furthermore, these results demonstrate the importance of targeting cell-cell communication as an anti-cancer therapy

    Diastolic dysfunction and arrhythmias caused by overexpression of CaMKIIδC can be reversed by inhibition of late Na+ current

    Get PDF
    Transgenic (TG) Ca2+/calmodulin-dependent protein kinase II (CaMKII) δC mice develop systolic heart failure (HF). CaMKII regulates intracellular Ca2+ handling proteins as well as sarcolemmal Na+ channels. We hypothesized that CaMKII also contributes to diastolic dysfunction and arrhythmias via augmentation of the late Na+ current (late INa) in early HF (8-week-old TG mice). Echocardiography revealed severe diastolic dysfunction in addition to decreased systolic ejection fraction. Premature arrhythmogenic contractions (PACs) in isolated isometrically twitching papillary muscles only occurred in TG preparations (5 vs. 0, P < 0.05) which could be completely terminated when treated with the late INa inhibitor ranolazine (Ran, 5 μmol/L). Force–frequency relationships revealed significantly reduced twitch force amplitudes in TG papillary muscles. Most importantly, diastolic tension increased with raising frequencies to a greater extent in TG papillary muscles compared to WT specimen (at 10 Hz: 3.7 ± 0.4 vs. 2.5 ± 0.3 mN/mm2; P < 0.05). Addition of Ran improved diastolic dysfunction to 2.1 ± 0.2 mN/mm2 (at 10 Hz; P < 0.05) without negative inotropic effects. Mechanistically, the late INa was markedly elevated in myocytes isolated from TG mice and could be completely reversed by Ran. In conclusion, our results show for the first time that TG CaMKIIδC overexpression induces diastolic dysfunction and arrhythmogenic triggers possibly via an enhanced late INa. Inhibition of elevated late INa had beneficial effects on arrhythmias as well as diastolic function in papillary muscles from CaMKIIδC TG mice. Thus, late INa inhibition appears to be a promising option for diastolic dysfunction and arrhythmias in HF where CaMKII is found to be increased

    Conceptualising production, productivity and technology in pharmacy practice: a novel framework for policy, education and research.

    Get PDF
    CONTEXT AND BACKGROUND: People and health systems worldwide face serious challenges due to shifting disease demographics, rising population demands and weaknesses in healthcare provision, including capacity shortages and lack of impact of healthcare services. These multiple challenges, linked with the global push to achieve universal health coverage, have made apparent the importance of investing in workforce development to improve population health and economic well-being. In relation to medicines, health systems face challenges in terms of access to needed medicines, optimising medicines use and reducing risk. In 2017, the International Pharmaceutical Federation (FIP) published global policy on workforce development ('the Nanjing Statements') that describe an envisioned future for professional education and training. The documents make clear that expanding the pharmacy workforce benefits patients, and continually improving education and training produces better clinical outcomes. AIMS AND PURPOSE: The opportunities for harnessing new technologies in pharmacy practice have been relatively ignored. This paper presents a conceptual framework for analysing production methods, productivity and technology in pharmacy practice that differentiates between dispensing and pharmaceutical care services. We outline a framework that may be employed to study the relationship between pharmacy practice and productivity, shaped by educational and technological inputs. METHOD AND RESULTS: The analysis is performed from the point of view of health systems economics. In relation to pharmaceutical care (patient-oriented practice), pharmacists are service providers; however, their primary purpose is not to deliver consultations, but to maximise the quantum of health gain they secure. Our analysis demonstrates that 'technology shock' is clearly beneficial compared with orthodox notions of productivity or incremental gain implementations. Additionally, the whole process of providing professional services using 'pharmaceutical care technologies' is governed by local institutional frames, suggesting that activities may be structured differently in different places and countries. DISCUSSION AND CONCLUSION: Addressing problems with medication use with the development of a pharmaceutical workforce that is sufficient in quantity and competence is a long-term issue. As a result of this analysis, there emerges a challenge about the profession's relationship with existing and emerging technical innovations. Our novel framework is designed to facilitate policy, education and research by providing an analytical approach to service delivery. By using this approach, the profession could develop examples of good practice in both developed and developing countries worldwide

    DNA Barcoding Reveals Cryptic Diversity in Lumbricus terrestris L., 1758 (Clitellata): Resurrection of L. herculeus (Savigny, 1826)

    Get PDF
    The widely studied and invasive earthworm, Lumbricus terrestris L., 1758 has been the subject of nomenclatural debate for many years. However these disputes were not based on suspicions of heterogeneity, but rather on the descriptions and nomenclatural acts associated with the species name. Large numbers of DNA barcode sequences of the cytochrome oxidase I obtained for nominal L. terrestris and six congeneric species reveal that there are two distinct lineages within nominal L. terrestris. One of those lineages contains the Swedish population from which the name-bearing specimen of L. terrestris was obtained. The other contains the population from which the syntype series of Enterion herculeum Savigny, 1826 was collected. In both cases modern and old representatives yielded barcode sequences allowing us to clearly establish that these are two distinct species, as different from one another as any other pair of congeners in our data set. The two are morphologically indistinguishable, except by overlapping size-related characters. We have designated a new neotype for L. terrestris. The newly designated neotype and a syntype of L. herculeus yielded DNA adequate for sequencing part of the cytochrome oxidase I gene (COI). The sequence data make possible the objective determination of the identities of earthworms morphologically identical to L. terrestris and L. herculeus, regardless of body size and segment number. Past work on nominal L. terrestris could have been on either or both species, although L. herculeus has yet to be found outside of Europe

    Differences in the ability to suppress interferon β production between allele A and allele B NS1 proteins from H10 influenza A viruses

    Get PDF
    BACKGROUND: In our previous study concerning the genetic relationship among H10 avian influenza viruses with different pathogenicity in mink (Mustela vison), we found that these differences were related to amino acid variations in the NS1 protein. In this study, we extend our previous work to further investigate the effect of the NS1 from different gene pools on type I IFN promoter activity, the production of IFN-β, as well as the expression of the IFN-β mRNA in response to poly I:C. RESULTS: Using a model system, we first demonstrated that NS1 from A/mink/Sweden/84 (H10N4) (allele A) could suppress an interferon-stimulated response element (ISRE) reporter system to about 85%. The other NS1 (allele B), from A/chicken/Germany/N/49 (H10N7), was also able to suppress the reporter system, but only to about 20%. The differences in the abilities of the two NS1s from different alleles to suppress the ISRE reporter system were clearly reflected by the protein and mRNA expressions of IFN-β as shown by ELISA and RT-PCR assays. CONCLUSIONS: These studies reveal that different non-structural protein 1 (NS1) of influenza viruses, one from allele A and another from allele B, show different abilities to suppress the type I interferon β expression. It has been hypothesised that some of the differences in the different abilities of the alleles to suppress ISRE were because of the interactions and inhibitions at later stages from the IFN receptor, such as the JAK/STAT pathway. This might reflect the additional effects of the immune evasion potential of different NS1s

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
    corecore